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Abstract

The skiving stock problem represents a natural counterpart of the extensively studied cutting stock problem
and requires the construction of as many large units as possible from a given set of small items. Although it
owes its scienti�c beginnings to the better-known �original�, in recent years it has been able to develop into
an independent branch of research within the OR community. Due to the continuous development of modern
optimization software, the focus was not only on concrete applications, such as in wireless communications,
but also on the design of e�cient integer models and their improvement by suitable reductions. This process
has recently reached its preliminary peak with the introduction of a powerful graph-theoretic approach, the
re�ect arc-�ow model. Even though this model signi�cantly improved the state of the art, there are still
many benchmark instances that even the current formulations cannot yet contribute to solving. We present a
new approach that is based on the observation that solutions of very good quality can already be determined
on rather sparse (arc-�ow) graphs, in general. More precisely, the arc sets of these graphs are de�ned by
appropriate patterns obtained from a stabilized column-generation approach, so that a consideration of
the complete integer re�ect arc-�ow model is only necessary in a few cases. Compared to the re�ect+
approach originally introduced for the cutting stock problem, we apply several modi�cations and show
their numerical advantages by extensive computational tests. We succeed in optimally solving many very
challenging benchmark instances for the �rst time.
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1. Introduction

In this article, we study the one-dimensional skiving stock problem (SSP), one of the classic representatives
in cutting and packing. We are given a set of item types, characterized by their item sizes and frequency of
appearance (also called availability). The SSP requires the combination of these items to a maximum number
of larger units each of which exhibiting at least a prede�ned threshold length. Even though the concrete
notation will be introduced explicitly in the following section, we would like to refer to Figure 1 for the sake
of illustration. Already this introductory description clearly reveals some parallels to the extensively studied
one-dimensional cutting stock problem (CSP) � and, indeed, the scienti�c framing of the SSP cannot be done
without having established a thorough overview of the CSP history �rst. In the cutting stock problem, a
given demand of small items has to be satis�ed by using as little stock material as possible. Before moving
forward into a more detailed literature review, we point out that, although forming an obviously related
pair of minimization and maximization problems and sharing the same kind of input data, the CSP and the
SSP are not dual to each other from the perspective of mathematical optimization. Consequently, despite
their obvious common features, the two problems are to be regarded as independent.
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Figure 1: A simple instance of the skiving stock problem with three item types and threshold length L = 10.

1.1. Literature Review

The scienti�c history of the CSP dates back to 1939, when Kantorovich described this problem for the
�rst time in a Russian publication and formulated an assignment model, which from today's point of view has
two decisive disadvantages: (i) a highly symmetric solution space, and (ii) a poor linear programming (LP)
relaxation. As a result of the turmoil of war and post-war time, Kantorovich's contributions did not achieve
international visibility within the Operations Research community until his research results were translated
into English in the early 1960s, see (Kantorovich, 1960). From this moment on, an increased interest in and
an intensi�ed discussion of the topics of cutting and packing optimization could be perceived in the academic
world. In the �rst place, the articles (Gilmore and Gomory, 1961, 1963) have to be mentioned, through
whose contributions the still today often favored pattern-based (or set-covering) view of such optimization
problems came into focus. More precisely, the authors based their considerations on so-called cutting patterns
(i.e., feasible combinations of items that can be cut from one piece of stock material) and were thus able
to present a novel description of the CSP as an integer linear program. However, the only linear number
of constraints was opposed by an exponential number of variables, and therefore also by a formulation that
was di�cult to handle at that time. While the integer problem could still not be addressed satisfactorily, the
general approach chosen by Gilmore and Gomory had the decisive advantage that the continuous relaxation
of the model led to very good approximations1 for the actual optimal value. Moreover, the solution of the LP
relaxation could be obtained e�ectively with the help of column generation (Desaulniers et al., 2005), which
also allowed to generate feasible integer solutions (e.g., by rounding procedures) of reasonably good quality.
In particular, it is also due to these convincing properties of the relaxation that it still serves as an important
cornerstone of some of the most powerful solution methods, such as branch-and-price algorithms, for the
CSP or the closely related bin packing problem (BPP), see (Belov and Scheithauer, 2002) or (Valério de
Carvalho, 1999) to mention only some (by far not exhaustive) references.

Because of the exponential number of variables in the pattern-based model already alluded to, a parallel
branch of research has emerged in the literature dealing with pseudo-polynomial formulations. The theoret-
ical foundations of such approaches mainly include the relations between integer and dynamic programming
(viewed from a perspective of network �ows) and were already introduced a little later by Shapiro (1968) and
Wolsey (1977). Another modeling idea, based largely on publications by Rao (1976) and Dyckho� (1981),
on the other hand, focuses on the individual cuts necessary to de�ne a pattern (which is, more or less, a
collection of cuts) and is therefore also referred to as the one-cut model. Even though these approaches, as
we know today, combined the advantages of a relatively manageable size with a good LP bound at the same
time, they were rather of theoretical use at the moment of their conception, since even moderate instances

1Although this will not be covered intensively in our article, we would like to note that this observation has developed
into one of the most important (open) theoretical research questions in the �eld of cutting and packing to date, the so-called
MIRUP conjecture (for the CSP) or MIRDP conjecture (for the SSP). For the purpose of further reading, we recommend the
articles by Caprara et al. (2015) and Kartak et al. (2015) (for the CSP case) as well as Martinovic and Scheithauer (2016b,
2018) (for the SSP case) to the inclined reader, but not without mentioning that the references used therein represent the
historical developments within this �eld much better than is possible by only citing a few contributions as examples.
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were not solvable with the just developing computer technology. For the sake of exposition, we would like to
quote here a passage from (Stadtler, 1988) that summarizes well the attitude towards the alternative models
at that time:

�This leads to the conclusion, that all cutting stock problems that can be solved by one-cut
models could also be solved by the column generation approach for the complete-cut model (but
not vice versa). [...] The set of real world cutting stock problems solvable by the one-cut model
is only a subset of those which could be tackled by the column generation approach.�

Even though the importance of numerical aspects was manifested in discrete optimization at least since the
well-known book (Nemhauser and Wolsey, 1988), it was not until around the turn of the millennium that
these pseudo-polynomial models could be pro�tably used to solve the CSP. One of the �rst contributions is
due to Valério de Carvalho (1999), who succeeded to solve exactly larger instance sizes, including some open
instances of the BPP, by implementing a column (and row) generation algorithm (for a �ow-based approach)
that reduced the computational e�orts considerably. Thanks to these �rst numerical successes, a very
detailed theoretical overview article (Valério de Carvalho, 2002), and the steadily progressing development
of suitable hardware components and (commercial) optimization software, the scienti�c discussion of the
alternative models was signi�cantly revived. The advantages already hinted at in the early contributions
mentioned above were �nally given the opportunity to prove themselves in meaningful practical experiments.
From that moment on, any of the approaches (i.e., the pattern-based model and the pseudo-polynomial
formulations) has seen numerous improvements over the years, all of which fostering contributions to further
increase the size of problems that can be solved in a reasonable amount of time. We would like to highlight
the following contributions in particular as signi�cant milestones:

� stabilization techniques for column generation, limiting the �uctuations of dual prices so that a faster
convergence is obtained (Valério de Carvalho, 2005; Ben Amor et al., 2006a; Gschwind and Irnich,
2016),

� reduction methods for the one-cut model (Martinovic et al., 2018), and for the �ow-based formulations
(Brandão and Pedroso, 2016), the latter of which culminating in the very powerful re�ect arc-�ow
approach proposed by Delorme and Iori (2020).

While both these major techniques will be explained in detail in the corresponding main parts of the article,
here we just mention the survey articles (Delorme et al., 2016) and (de Lima et al., 2022a) for a good
overview of further contributions in terms of the CSP and corresponding modeling frameworks.

The SSP has found its way into the scienti�c discussion much later than the CSP, but it has nevertheless
followed a strikingly similar trajectory. More precisely, the SSP was �rst described in the Ph.D. thesis of
Assmann (1983) and the follow-up article of Assmann et al. (1984), namely, conceptually slightly misleading,
as a dual bin packing problem (DBPP). As already indicated at the beginning, this does not at all mean a
duality in the sense of mathematical optimization, but merely an interaction of the two problems in terms of
content. While the DBPP primarily addressed the processing of a very heterogeneous list of items (i.e., all
of which have a frequency of one), the term SSP was �rst used to describe a concrete practical application
in the paper industry (Johnson et al., 1997; Zak, 2003), but henceforth has stood for the actual counterpart
to the CSP, i.e., a problem with a very homogeneous list of items whose elements can be grouped into item
types. Although being similar at �rst view, di�erent solution methods have been developed for any of the
two variants to e�ectively tackle the few (but existing) problem-speci�c challenges. We refer the reader to
the research of Labbé et al. (1995) and Peeters and Degraeve (2006), introducing early branch-and-bound
based approaches for the DBPP, as well as the article by Zak (2003) focussing on a pattern-based approach,
the so-called standard model, for the SSP case. Despite its still young age, a certain range of application
�elds for the SSP has opened up in the last two decades, especially, where responsible and sustainable
handling of raw materials or o�cuts is desirable. In addition to the examples from the paper industry, here
we further mention manufacturing and inventory planning (Arbib et al., 2002), multiprocessor scheduling
problems (Alvim et al., 2004), further practical case studies (Agoston, 2019), and wireless communications
(Martinovic et al., 2017; Tragos et al., 2013). Especially in the last mentioned area, in which the optimal
reconstruction of unused portions of the frequency spectrum is concerned, approaches based on the SSP
have contributed to a substantial improvement of the previous state of research. Moreover, the advancing
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scienti�c discussion of the SSP proved useful even when it itself appeared only as a subproblem within
combined cutting-and-packing applications (Chen et al., 2019; Kªosowski et al., 2018; Wang et al., 2020).

In recent years, this development of an increasingly broadening range of relevant application �elds has
been favored primarily by the fact that signi�cant progress has also been made with respect to the theory
of alternative and more sophisticated modeling techniques. Most notably, the �rst holistic research in
terms of pseudo-polynomial formulations for the SSP has been conducted in Martinovic and Scheithauer
(2016a): The authors not only proposed an arc-�ow model and a one-stick model for the problem under
investigation, but also constructively proved the equivalence of their LP relaxations among one another and
to that of the pattern-based standard model. This not only provided additional modeling options, but also
highlighted their general and computational strengths at the same time, bringing together observations that
had remained separate for several decades in the CSP case. However, motivated by the results in Delorme
and Iori (2020), some serious improvements of the original arc-�ow model have been proposed in Martinovic
et al. (2020). To be more precise, the authors of that article made use of reversed loss arcs and the idea of
the re�ect arc-�ow model, that (roughly speaking) only requires to deal with the �rst half of the vertex set to
obtain integer LP (ILP) formulations of less challenging size. Moreover, the aforementioned piece of research
contained the �rst systematic approach to collect a plethora of di�erently characterized benchmark instances
for the SSP, which then served as a solid basis for extensive computational experiments clearly showing the
convincing performance of the new formulations. De Lima et al. (2021) present a more generic approach
for arc-�ow models of pseudo-polynomial size which combines column generation, variable-�xing based on
reduced costs, and an asymmetric branching scheme. Experiments on the SSP show clear improvements in
terms of average computation times for smaller benchmark instances in comparison to the just mentioned
arc-�ow formulation and the re�ect arc-�ow formulation. However, they did not present results of their new
approach for the very large, challenging SSP instances that we will consider.

1.2. Overview and Contribution

Despite all the progress on solving the SSP, there is still a large number of unresolved instances within the
various classes of test sets. This justi�es further research on several possible algorithmic re�nements. In this
sense, we adapt and re�ne the re�ect+ algorithm of Delorme and Iori (2020) that was originally designed
to solve CSP and BPP instances. Re�ect+ is an exact algorithm trying to reduce the computational
e�ort in the average case. To this end, a sequence of re�ect arc-�ow models with only a subset of the
arcs/variables are solved by a MIP solver, each providing a heuristic primal solution. The linear relaxation
of a pattern-based formulation is solved beforehand to compute a dual bound and to identify promising
patterns and (implicitly) also promising arcs for the integer re�ect arc-�ow formulation. When primal and
dual bound coincide, optimality is proven. Otherwise, the next larger re�ect arc-�ow model of the sequence
is considered. The last model is the complete re�ect arc-�ow model, in which however provably non-optimal
arcs are eliminated using reduced-cost arguments.

Algorithm 1 summarizes the adapted and re�ned re�ect+ algorithm that we suggest for solving the SSP.
Steps 2�4 are related to the solution of the linear relaxation of the pattern-based formulation. Compared to
the re�ect+ algorithm of Delorme and Iori, we di�er in the following aspects:

� For pricing, we use the smaller arc-�ow network. This improves the run time (the impact is however
minor) and makes sure that all generated patterns can be later transformed into arcs of the re�ect
arc-�ow model. In contrast, Delorme and Iori (2020) use COMBO from (Martello et al., 1999) that
solves a binary knapsack problem �rst heuristically and exactly only if the heuristic fails.

� We stabilize the column-generation process with the help of dual inequalities, which is particularly
bene�cial for very large-scale SPP instances where otherwise the column-generation process is too slow
so that re�ect+ already fails at this stage. Solutions to stabilized pattern-based models consist of a
mix of pattern columns and columns representing the dual inequalities. A retransformation into a
pure pattern-based solution is then necessary (see Step 4).

The result are two sets PB and PLP of those patterns present in the �nal basic solution of the linear relaxation
and all generated patterns, respectively.

As a preparatory step (Step 9), reduced costs of all variables of the corresponding arc-�ow formulation
are computed. In contrast to the suggestion of Delorme and Iori (2020), we obtain them directly from the
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Algorithm 1 Re�ect+ for the Skiving Stock Problem

1: Greedy heuristic H1 . LB0

2: Build initial patterns Pinit for the column generation (CG) procedure with subset-sum procedure H2

3: Use stabilized CG to solve linear relaxation of pattern-based model . zLP and UB = bzLP c
4: Transformation of the CG solution into a pure pattern-based solution . PB and PLP
5: Level 1: Solve re�ect arc-�ow model with arc set A1 constructed with PB . LB1

6: Level 2: Solve re�ect arc-�ow model with arc set A2 constructed with PLP . LB2

7: Level 3: Solve re�ect arc-�ow model with arc set A3 where unpromising arcs �xed to zero . LB3

8: LB ← max(LB0, LB1, LB2, LB3)
9: Compute reduced costs c̃ij of arcs (i, j) using path-reduced costs from the CG solution
10: while (LB < UB) do
11: Level 4: Fix arc variables xij to zero if c̃ij > zLP − UB to obtain arc set A4 . A4

12: Solve re�ect arc-�ow model with arc set A4 . LB4

13: LB ← max(LB,LB4) and UB ← UB − 1
14: end while

linear relaxation of the pattern-based formulation exploiting again that pricing uses the arc-�ow network.
Transferring these reduced costs to the re�ect arc-�ow formulation is possible.

The Steps 5�13 are describing how the sequence of re�ect arc-�ow models is used. At the Levels 1 to 3
(Steps 5, 6, and 7), the solution approach is heuristic because the restricted models are built with heuristic
rules to thin out the arc/variable set. In contrast, the loop (Steps 9�13) iteratively solves exact models
based on the assumption that the computed lower bound LB is the optimal objective. As long as the new
computed solution (if any) is worse than UB, then UB is decreased by one and the process repeats. Note
that if the MIRDP conjecture holds, then not more than two traversals of the loop of Level 4 result.

We describe the details of all steps of the re�ect+ algorithm in the following sections with a focus on the
algorithmic re�nements (also underlined in the pseudo code of Algorithm 1) compared to the algorithm of
Delorme and Iori (2020) for the CSP.

1.3. Structure of the Paper

The remainder of the paper is structured as follows. Section 2 introduces notation and presents the
greedy heuristic and subset-sum procedure. Pattern-based formulations and the solution of their linear
relaxation with the help of a stabilized column-generation algorithm are discussed in Section 3. Section 4
then elaborates the construction of restricted re�ect arc-�ow models and their solution with a MIP solver.
Computational results are presented in Section 5. The paper closes with �nal conclusions drawn in Section 6.

2. Preliminaries and Heuristics

Let us start by formally introducing the SSP. Let N denote the natural numbers N = {1, 2, 3, . . . } and
Z+ = {0} ∪N the non-negative numbers.

De�nition 1. An instance E of the SSP is given by a tuple (m, l, L,b) ∈ N×Nm×N×Nm with the inter-
pretation that m is the number of di�erent items types, l = (l1, . . . , lm) the vector of item sizes (lengths), L
the threshold length, and b = (b1, . . . , bm) the item frequencies. For convenience, we refer to I = {1, . . . ,m}
as the item (type) set.

Without loss of generality, we assume the item types to be ordered decreasingly with respect to size, i.e.,
l1 > l2 > . . . > lm has to be satis�ed. Moreover, l1 < L can be assumed, because any item equal to or larger
than L does not have to be considered within the optimization.

De�nition 2. Let E = (m, l, L,b) denote an SPP instance.
(i) Any vector p ∈ Zm+ satisfying l>p ≥ L is called a pattern (a.k.a. packing pattern).
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(ii) A pattern p ∈ Zm+ is minimal if there is no other pattern p̃ ∈ Zm+ with p̃ ≤ p (in a componentwise
sense).

(iii) A pattern p is proper if p ≤ b (in a componentwise sense).
(iv) The set of all patterns is denoted by P (E), the set of all minimal patterns by P ?(E), and the set of

all proper patterns by Pp(E).

Before we are going to deal with exact methods for solving the SSP in the following sections, two
heuristic approaches will be discussed here �rst: the greedy heuristic H(1) and the subset-sum procedure
H(2). Both methods have already been brie�y mentioned in Algorithm 1, but without explaining their
concrete mechanisms. H(1) provides a lower bound for the optimal value and a feasible solution for a
given SSP instance (together with an associated set of patterns used), whereas from H(2) we obtain only an
expedient set of patterns. While the former represents purely numerical information that can be provided by
several SSP heuristics with similar or even identical quality, the selection of, in a sense, �promising� patterns
is crucial for the further progress of the re�ect+ algorithm. We therefore distribute the two aforementioned
purposes of such an approximate solution over two di�erent methods, using:

� the very simple greedy heuristic H(1) to generate a �rst lower bound,
� the somewhat more sophisticated subset-sum procedure H(2) to provide a reasonable set of, in a sense
�low-waste�, initializing patterns for the column-generation process.

The greedy heuristic H(1) follows the procedure already presented in (Peeters and Degraeve, 2006) and
(Martinovic et al., 2020). By that, we mean that a bin is �rst �lled with as many copies as possible of the
currently largest available item type i? ∈ I (so that the threshold is not yet exceeded). Among all items
then still available, one is searched for that completes the previous con�guration to a feasible pattern while
wasting as little material as possible. If such an item does not exist, the bin is �rst further �lled with as
many items of the type i? + 1 (again, without exceeding the capacity), and then it is checked again whether
a completing item (in the previously de�ned sense) exists.

In contrast, the subset-sum procedure H(2) builds patterns based on the subset-sum problem. More
precisely, we iteratively �x an item type i ∈ I and apply the following steps:

S1: De�ne a new threshold length Li := L− li and a new set of items: Ii := I \ {i}.
S2: Solve a subset-sum problem to �nd a subset of items (of Ii), each of which appearing at most once,

whose item lengths add up to the new threshold length Li. If there is no such combination, �nd a
subset of items with the shortest pattern length larger than Li.

S3: Add item i to this subset and store the set of items as a new pattern.
We implemented the algorithm of Cormen et al. (2009) to tackle the subset-sum problems. Typically,

the main advantage of the subset-sum procedure is that most of the resulting patterns have a pattern
length equal to or only slightly larger than the threshold length, whereas patterns obtained from the greedy
heuristic are often strictly longer than L. In other words, one could say that the patterns constructed using
procedure H(2) are generally more promising in the sense that they exhibit better material utilization. As we
will see later, this idea is particularly helpful for those benchmark instances whose integer solution consists
of low-waste or even waste-free patterns (like AI/ANI), see Section 5.

3. Pattern-based Formulations and Solution with Stabilized Column Generation

With the de�nition of patterns, it is possible to formulate pattern-based models of the SSP as proposed
by Zak (2003). Such a model can be formulated for any set of patterns P , e.g., the complete set P = P (E)
or a subset of it. Let λp ∈ Z+ for each p = (pi)i∈I ∈ P count how often the respective pattern is built, then
we obtain the pattern-based formulation:

(FP ) z(FP ) = max
∑
p∈P

λp (1a)

subject to
∑
p∈P

piλp ≤ bi, i ∈ I, (1b)

λp ∈ Z+, p ∈ P. (1c)
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The objective function (1a) maximizes the number of constructed patterns, while constraints (1b) make sure
that at most bi items of type i ∈ I are used. The domain of the decision variables is stated in (1c).

Any pattern set P ⊇ P ?(E) ∩ Pp(E) guarantees that the corresponding solution is optimal for the
instance E. In particular, the integer models for P (E), P ?(E), and Pp(E) are equivalent, i.e.,

z(FP (E)) = z(FP?(E)) = z(FPp(E)).

The linear relaxation of the pattern based model (1) is denoted by LP (FP ), its objective value by
zLP (FP ). For the linear relaxations, we have

zLP (FP?(E)) = zLP (FP (E)) and zLP (FPp(E)) ≤ zLP (FP (E)),

where, in the latter case, < is possible for some SSP instances E. Consequently, using proper patterns may
lead to a better linear-relaxation bound, as observed in Martinovic and Scheithauer (2016c). In contrast,
the �rst relation has to be an equation as any non-minimal pattern can be reduced to an element of P ?(E)
even in the LP relaxation.

3.1. Stabilized Column Generation

Given the generally exponentially large number of patterns and variables in the aforementioned models,
they cannot be solved directly in their integer version. However, the continuous relaxation of such a pattern-
based formulation can be solved e�ectively using the column-generation method. Here, one starts with a
small set of patterns and iteratively checks whether more patterns need to be added to this set by solving
a pricing problem. In our case, we use the arc-�ow network to handle the pricing subproblems and add up
to 500 new patterns with negative reduced cost to the pattern pool per iteration (recall that the reduced or
opportunity cost of a pattern p is −1 +π>p for a dual-prices vector π in the linear maximization problem).
Of course, those patterns (which result from their associated paths in the graph) with particularly small
reduced cost are selected preferentially.

The column-generation process for solving (1) produces new patterns complementing those of the initial
pattern set Pinit, i.e., Step 3 of Algorithm 1. For the quality of the linear-relaxation bound, we are interested
to only generate patterns from the set P ∗(E)∩Pp(E). However, other patterns p ∈ P (E)\ (P ∗(E)∩Pp(E))
may be generated also because of the following two algorithmic components.

First, pricing problems for CSP and SPP are solved as a type of shortest-path problem over a di-
graph (V,A) in which vertices v ∈ V correspond the possible lengths of partial patterns, i.e., values
0, 1, 2, . . . , L for the CSP and likewise 0, 1, 2, . . . , L, L+ 1, . . . , L+ l1− 1 for the SSP, and arcs (j, j + li) ∈ A
represent the item types i ∈ I (Gilmore and Gomory, 1963; Zak, 2003). This can lead to patterns containing
a number of items larger than their demands in the CSP and larger than their frequencies in the SSP. In
contrast, by solving a binary knapsack problem only binary patterns which are proper and maximal are
generated for the BPP. Our pricing algorithm uses the SSP arc-�ow network for pricing out patterns and
solves a shortest-path problem over it (a detailed de�nition of the network can be found in Martinovic et al.,
2020, Section 2). The use of the arc-�ow network reduces the occurrence of patterns that are not proper.
Furthermore, it guarantees that patterns are minimal. Neither the arc-�ow nor the re�ect arc-�ow model
can however guarantee that only proper patterns occur (see again Martinovic et al., 2020, Remark 4 and
Example used in Theorem 8). As a result, we generally have the relationship

Pp(E) ∩ P ?(E) ⊆ PCG(E) ⊂ P (E),

and therefore
zLP (FP?(E)∩Pp(E)) ≤ zLP (FPCG(E)) ≤ zLP (FP (E))

where PCG(E) refers to the pattern set computed with the column-generation procedure. Note that strict
inequalities are possible.

Second, we use a stabilization approach with dual inequalities for the column-generation algorithms. Let
π = (πi)i∈I be the dual variables to the constraints (1b). Any inequality a>π ≥ c with (a, c) ∈ Rm+1 is a
dual inequality corresponding with a column a with cost c ∈ R in the primal formulation (1). Ben Amor
et al. (2006a) classify dual inequalities into
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� dual-optimal inequalities (DOIs) are dual inequalities that do not cut o� any dual optimal solution π? ∈
Π? (we denote the set of dual optimal solutions by Π? in the following)

� deep dual-optimal inequalities (DDOIs). The latter term refers to a set {a>k π ≥ ck} of dual inequalities
and means that the inequalities together do not cut o� the entire dual optimal space, i.e., Π? ∩ {π ∈
Rm+ : a>k π ≥ ck for all k} 6= ∅.

Ben Amor et al. (2006a) and Gschwind and Irnich (2016) prove several equivalent properties of DDOIs,
among others, that the primal formulation extended by columns corresponding to a set of dual inequalities
and the primal formulation itself provide the same linear-relaxation bound if and only if the dual inequalities
are DDOIs. Moreover, this is equivalent to the existence of a constructive procedure that transforms any
optimal mixed solution (patterns and columns resulting from dual inequalities) into a pure pattern solution
of the same cost. The point is now that this transformation may produce patterns that are not proper. The
type of produced patterns depends on both the initial pattern set Pinit, the pattern generation process in
column generation, and the type of dual inequalities added to the RMP. We therefore describe families of
dual inequalities more precisely.

Following the taxonomy of Gschwind and Irnich (2016) and Heÿler et al. (2018), the most general family
of dual inequalities that they consider is de�ned as follows: For any item j ∈ I, subset S ⊂ I \ {j}, and
weights (wi)i∈S ∈ N|S| with

∑
i∈S wili ≥ lj , the inequality∑

s∈S
wiπi − πj ≥ 0

is called weighted subset inequality (WSI) for (j, S, (wi)i∈S). Several WSIs de�ned by (jk, Sk, (w
k
i )i∈Sk

)
indexed by k ∈ K lead to an extended primal model in which (1b) is replaced by∑

p∈P
piλp −

∑
k∈K:jk=i

yk +
∑

k∈K:i∈Sk

wkyk ≤ bi, i ∈ I, (1b')

with additional non-negative continuous variables

yk ≥ 0, k ∈ K. (2)

If all weights are equal to one, i.e., wi = 1 for all i ∈ S, the dual inequality is a subset inequality (SI) for the
pair (j, S). The interpretation of an SI de�ned by (j, S) for the primal model (1) is that one can replace an
item of type j by the items of type i ∈ S in every pattern without making the pattern infeasible. If S = {i}
is a singleton set (assuming li > lj), the inequality becomes πi − πj ≥ 0 and is denoted as a pair inequality
(PI) for the item pair (j, i). The dual interpretation of the PI for (j, i) is that one unit of supply of item
type i is at least as useful as one unit of supply of item type j, i.e., πi ≥ πj . The set of all PIs (with O (m2)
elements) is equivalent to the set of ranking inequalities (RIs) πi − πi+1 ≥ 0 for i ∈ I \ {m} (recall that we
assume l1 > l2 > · · · > lm). The set of RIs comprises only O (m) elements.

RIs ⊂ PIs ⊂ SIs ⊂ WSIs

Pattern- P = Pp(E) DDOIs � �
based ⊂
formulation P = PCG(E) DDOIs � �
(1a), (1b'), λp ≥ 0, and (2) ⊂
with pattern set P P = P (E) DOIs DOIs DOIs

Table 1: Families of dual inequalities (DIs) and their relationship to pattern-based formulations de�ned over
di�erent pattern sets; entries ��� indicate that the family of dual inequalities is not necessarily a set of
DOIs or DDOIs; some inequalities may however be DOIs or DDOIs depending on the SSP instance E.

Table 1 summarizes what is known about the relationship between di�erent families of dual inequalities
and the linear-relaxation of the extended linear pattern-based formulations.
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3.2. Transformation into a Pure-Pattern Solution

A well-known issue related to the patterns generated during the stabilized column-generation procedure
is that they can obtain items in a larger quantity than allowed by the input data of the given instance
(Ben Amor et al., 2006b). Although one could simply delete such patterns without compensation in the
construction of thinned out graphs that we are aiming at, this would cause us to lose valuable information
from the previously determined solution of the LP relaxation. Thus, it is strongly recommended to transform
these con�gurations, which are invalid for our networks, into actual patterns.

Remark 1. More precisely, if the patterns generated during stabilized column generation are not trans-
formed, the resulting arc-�ow digraph of Level 1 and Level 2 of re�ect+ will include (more) paths that
represent invalid patterns regarding the given items of the instance. The e�ects of a missing transformation
can later be observed in Table 4 for the large GI instances.

In general, the following steps are required to obtain a pure-pattern solution:
1. Select a DOI that is part of the LP solution and �nd all patterns of the solution containing the item

that was transformed into a longer item by this DOI. Store these patterns in a list.
2. Sort this list of patterns in increasing order by the value of the item that will be transformed.
3. Take the �rst element of the list: Retransform the item that was exchanged by the DOI. In case the

frequency of occurence of this pattern in the LP solution is high enough, eliminate the DOI completely
and update frequency of the pattern (also in the list). Otherwise, convert the pattern completely into
an original pattern, delete the element from the list, and reduce the solution value attached to the
DOI accordingly.

4. If the solution value of the DOI is still positive, go to Step 3 again. In the opposite case (that is, the
DOI is eliminated), take the next DOI (if available) and go back to Step 1.

Typically, especially for larger instance sizes, there will be multiple options to choose a pattern to be
transformed for the considered DOI. In our internal precalculations, we obtained slightly better results
whenever as many patterns as possible have been transformed. Hence, in Step 2 of the above list, the
patterns are sorted in increasing order by the value of the item that will be transformed. By that, the
solution value of the arti�cial DOI column is distributed over the maximum number of patterns in the �nal
pure-pattern solution.

4. Restricted Re�ect Arc-Flow Models

Flow formulations form a powerful tool in cutting and packing, as they combine important structural
properties (e.g., a good LP relaxation) with a large illustrativeness and a generally manageable model size,
and so they can typically be handled well by ILP solvers. The re�ect arc-�ow model has recently emerged
as the most important representative within this group (Delorme and Iori, 2020; Martinovic et al., 2020).
In contrast to classical graph-based approaches, this formulation is particularly convincing in that, roughly
speaking, only half the bin size has to be modeled and, thus, numerous variables can be saved. This is
signi�cant because in conventional networks the number of active vertices and arcs is very large, especially
in the second half of the graph, due to the ever increasing combination possibilities of the items. In return
for these savings, there is no longer a classical representation of patterns by paths from the source to a sink,
but a pattern is modeled as a composition of two sub-paths that must be suitably combined. Without going
into all conceivable details, it can be stated that a re�ect graph consists of di�erent classes of arcs. It can
be obtained from a classical arc-�ow network with arc set A according to the following rules:

� Any arc (u, v) ∈ A with u < v ≤ R is kept as a standard arc (u, v, s),
� Any arc (u, v) ∈ A with u < R < v is replaced by a re�ected arc (u, L− v, r),
� Any arc (u, v) ∈ A with R ≤ u < v is omitted.

In this construction, R := L/2 serves as the re�ection point, and fractional coordinates can be avoided
by scaling any item length by a factor of 2, if required. Moreover, we introduce loss arcs (d, e, `) with
e = succU (d), specifying vertex e as the direct successor of vertex d. Loss arcs are added to the network,
starting at the lowest-indexed vertex that is the head of a re�ected arc and continuing step-by-step until
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R is reached. Finally, an arti�cial arc (L/2, L/2, r) has to be added to be able to combine two sub-paths
representing exactly half of the bin size. Let us refer to the obtained vertex and arc sets by U and A,
respectively. Moreover, we de�ne U? := U \ {0} and A? := A \ {(R,R, r)} for the sake of an easier notation
in the following ILP model. Introducing ξdeκ ∈ Z+ to indicate the units of �ow carried by arc (d, e, κ) ∈ A,
where κ is a generic label for the arc type, we obtain the re�ect arc-�ow model for the SSP proposed in
Martinovic et al. (2020):

(FA) zA = max
∑

(d,e,r)∈A

ξder (3a)

subject to
∑

(d,e,s)∈A:
e−d=li

ξdes +
∑

(d,e,r)∈A:
e=2R−d−li

ξder ≤ bi i ∈ I (3b)

∑
(0,e,s)∈A

ξ0es +
∑

(0,e,r)∈A

ξ0er = 2
∑

(d,e,r)∈A

ξder (3c)

∑
(d,e,s)∈A

ξdes +
∑

(e,f,`)∈A

ξef`

=
∑

(d,e,r)∈A

ξder +
∑

(d,e,`)∈A

ξde` +
∑

κ∈{r,s},
(e,f,κ)∈A

ξefκ e ∈ U∗ (3d)

∑
(d,e,`)∈A

ξde` +
∑

(d,e,r)∈A

ξder ≥
∑

(e,f,`)∈A

ξef` e ∈ U∗ (3e)

ξdeκ ∈ Z+ (d, e, κ) ∈ A∗ (3f)

ξR,R,r ∈ Z (3g)

For re�ect+, we extend the formulation of Martinovic et al. (2020) by adding additional variables that
follow the same logic as the RIs in the pattern-based model. More precisely, let ti ∈ Z+ for i > 1 mimic
what an RI for items i− 1 and i is doing: replace item i by longer item i− 1 (knowing that li−1 > li holds).
Therefore, constraints (3b) are replaced by the following constraints:∑

(d,e,s)∈A:
e−d=li

ξdes +
∑

(d,e,r)∈A:
e=2R−d−li

ξder −
{
ti, i > 1
0, otherwise

+

{
ti+1, i < m
0, otherwise

≤ bi (3b')

Remark 2. Similar conditions could also be added to describe the exchange of two or more items by one
object with a larger total length. However, it was shown in Delorme and Iori (2020) that this generally does
not lead to any improvement. The drawback is the relatively large number of additional constraints so that
here we just focus on the RI-like exchanges.

In our algorithm, we do not use the complete set of arcs in many places, but only subsets A′ ⊂ A of
them in order to be able to work on thinned out graphs. It is therefore indispensable to describe how exactly
a subset P of patterns is integrated into the network, since this largely determines the �nal combination
possibilities. To this end, we run through the given subset of patterns and repeat the following procedure
for any �xed pattern:

� We start with the largest item i appearing in the pattern p and add its corresponding arc(s) (starting
at vertex 0; as often as the coe�cient pi indicates) to the network. We then place the arc of the
second largest item next to it and process the remaining items equivalently until the re�ection point
is reached or exceeded.

� We then sort the remaining items of the given pattern with respect to increasing item lengths and
include them in the graph (again starting at vertex 0) in the same way as before. Obviously, this time
all items will be used before exceeding the re�ection point.

� Combine the two paths by adding loss arcs or the arti�cial re�ected arc, if required.
10



Before we deal with the numerical test calculations in the next section, we would now like to conclude
by going into more detail about the individual stages of our algorithm:
Level 1: At �rst we solve FA1

, i.e., the re�ect arc-�ow model with just the pattern set PB . By that we
obtain a feasible solution and a lower bound LB1 for the unknown optimal value. In case the
gap between LB1 and the upper bound UB is less than one, we have already found an optimal
solution and can stop the algorithm.

Level 2: We proceed in the same way as in Level 1, but this time solve FA2 which originates from the
typically much larger pattern pool PLP .

Level 3: As an auxiliary tool, we �rst solve the linear relaxation of FA and obtain the solution ξ̄. We
use the information provided by that speci�c solution to build the set Un := {u ∈ U : ξ̄deκ <
ε,∀(d, e, κ) ∈ A incident to u} for ε = 10−6, which contains all vertices through which e�ectively
no �ow units pass. We then solve Solve FA with subsequent additional constraints

ξdeκ = 0 d ∈ Un, (d, e, κ) ∈ A, (4)

which is equivalent to dealing with FA3
, a formulation that does not contain the unpromising

arcs at all. On the one hand, the calculation e�ort gets a lot smaller with these constraints, but
on the other hand there might be some arcs �xed to zero now that are part of an optimal integer
so that the solution obtained in this level is just a lower bound with a gap of at least one.

Level 4: This level contains an iterative mechanism. At �rst, we assume that UB := bzLP c is the true
optimal value. In case the reduced cost of an arc (from A) is larger than the di�erence between
zLP and UB, this arc is not required for an optimal solution and its �ow can be �xed to zero.
By that, we obtain an arc set A4. The solution of FA4 provides the lower bound LB4. In case an
optimal integer solution has not been found during an iteration, the tentative upper bound UB
is decreased by one before the next iteration starts.
Whereas Delorme and Iori (2020) use reduced costs from the LP relaxation of the re�ect arc-�ow
model, we found out that it is slightly advantageous to use path-reduced costs from the pattern-
based formulation of the column-generation algorithm instead (see Section 5). Path-reduced
costs can be computed via a bidirectional search technique as proposed by Irnich et al. (2010).
Given the reduced costs of a path, the corresponding arc-variables in the arc-�ow model can be
�xed to zero in case the path-reduced costs are too high. Irnich et al. (2010) also show how the
reduced costs of the arc-variables can be calculated from the reduced costs of paths.

5. Computational Results

The entire re�ect+ algorithm is implemented in C++ and compiled with Microsoft Visual Studio 2017
into 64-bit single thread code. We use CPLEX 12.10 for (re)optimizing the RMPs and whenever LP relax-
ations of the re�ect arc-�ow model need to be solved. Gurobi 9.1.0 is utilized when solving ILP formulations.
Default values are kept for all parameters of the two solvers, except from setting the number of threads to one.
In addition, Gurobi exerts the barrier algorithm. The computational study was executed on a 64-bit Mi-
crosoft Windows 10 computer with Intel® Core� i7-5930k CPU clocked at 3.5 GHz and 64 GB of RAM.
The time limit is set to 3600 seconds per instance.

5.1. Results on SSP Benchmark Instances

We let the re�ned re�ect+ algorithm run with all new components (underlined in green in Alg 1). Subse-
quently, we will then systematically analyze the impact of each main algorithmic component in Section 5.2.

In our numerical investigation, we focus in particular on those classes of SSP benchmark instances that
could only be solved by the ILP solver using the traditional re�ect arc-�ow model from Martinovic et al.
(2020) to a limited extent or not at all within the time limit of one hour. These are the classes

� AI/ANI of Delorme et al. (2016), which are characterized by particularly many feasible patterns and
the fact that any optimal solution is composed of waste-free item combinations only. Furthermore,
it should be noted that all ANI instances have an integrality gap of one and are, thus, even more
challenging.
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� GI of Gschwind and Irnich (2016), which are mainly characterized by a huge bin size of up to 1.5 million
and thus generally lead to very large networks (and also very large ILPs).

We run re�ect+ and compare the state-of-the-art results obtained with the compact formulation (3) both
with our implementation and that in (Martinovic et al., 2020). Table 2 provides aggregated results. For each
subclass of instances (the number of instances is given in column #), we list the average computation times
(time) in seconds and the number (#opt) of instances solved to proven optimality. Moreover, we indicate
the best values by using bold font.

Re�ned ILP solver with
re�ect+ re�ect arc-�ow model

Our implementation Martinovic et al.

Instances # time #opt time #opt time
† #opt

AI201 50 22.5 50 20.3 50 26.3 50

AI402 50 2024.4 28 1801.1 32 2016.9 31
ANI201 50 274.5 50 206.0 50 238.5 50

ANI402 50 3586.0 1 3548.2 1 3600.0 0
GI125 80 29.6 80 1794.8 40 1802.1 40
GI250 80 153.2 80 1836.1 40 1854.0 40
GI500 80 707.2 79 3004.6 32 3584.2 2
GI750 40 1105.9 39 3600 0 � �
GI1000 40 2351.6 33 3600 0 � �

Table 2: Re�ect+ vs. ILP solver using the re�ect arc-�ow formulation on large benchmark instances of
Gschwind and Irnich (2016); Delorme et al. (2016); †: Martinovic et al. (2020) use Gurobi 8.0.1 on a PC
with a AMD A10-5800K CPU with 16GB of RAM.

The main observations can be summarized as follows:
� For the ANI instances, it is clear for theoretical reasons that re�ect+ can in principle lead to no
improvement, since all levels of the algorithm must be executed due to the positive integrality gap.
In particular, re�ect+ must solve the complete re�ect arc-�ow ILP at the end (as well as handle the
additional levels before in vain).

� For the AI instances, re�ect+ does not lead to any noticeable improvements here either. Presumably,
this is due to the fact that an optimal solution consists of nothing but waste-free patterns. Is seems
that the required representatives of these patterns, however, are not generated to a su�cient extent
in the column-generation process and are therefore not present in the thinned-out graphs constructed
from them.

� Whereas the ILP solver using the re�ect arc-�ow formulation of Martinovic et al. (2020) was only able
to deal with some easier subclasses of the GI set (not involving the maximum bin size of 1.5 million
units), re�ect+ is able to successfully cope with almost all the instances, even if the number of item
types is particularly high. Altogether, only nine GI instances (seven of which coming from the most
challenging parameter setting with m = 1000) could not be solved by re�ect+ in reasonable time. This
is a clear improvement compared to the traditional re�ect arc-�ow approach.

Table 3 makes the same comparison between the re�ect+ algorithm and the ILP solver-based approach
for the smaller benchmark instances of Scholl et al. (1997). The meaning of the table entries is identical as
for Table 3. Clearly, the re�ned re�ect+ algorithm can keep up with the ILP solver applied to the re�ect
arc-�ow model. It even outperforms it for the class Scholl 3. Thus, we like to point out that the multi-level
re�ect+ algorithm is not disadvantageous even for smaller instances that can be easily solved directly with a
compact formulation. Based on this �nding, these smaller instances will not be considered in all subsequent
experiments.

12



Re�ned ILP solver with
re�ect+ re�ect arc-�ow model

Instances # time #opt time #opt time
† #opt

Scholl 1 720 0.2 720 0.1 720 0.0 720

Scholl 2 480 13.4 480 13.1 480 20.8 480

Scholl 3 10 6.7 10 34.9 10 65.1 10

Table 3: Re�ect+ vs. ILP solver using the re�ect arc-�ow formulation on smaller benchmark instances of
Scholl et al. (1997).

5.2. Evaluation of Algorithmic Components

Now we compare the fully-�edged re�ect+ (referred to as Setting (1) in the following) with versions
of re�ect+ in which always one of main algorithmic components is switched o�. Speci�cally, this means
without the component:
(2): subset-sum procedure (only greedy heuristic),
(3): stabilized column generation (unstabilized),
(4): retransformation into a pure pattern-based solution (pattern columns only), and
(5): reduced costs from the LP relaxation of the re�ect arc-�ow model instead of path-reduced costs from

the column generation.
Settings (2)�(5) represent the novelties in which our re�ect+ algorithm di�ers from the primary re�ect+
algorithm for the CSP presented in (Delorme and Iori, 2020).

Table 4 summarizes the comparison between the settings (1)�(4) and Table 5 the comparison with
setting (5) in a more detailed fashion.
We highlight the following facts:

Setting (1) Setting (2) Setting (3) Setting (4)
re�ned only greedy non-stabilized no pattern
re�ect+ heuristic column generation retransformation

Instances # time #opt time #opt time #opt time #opt

AI201 50 22.5 50 31.5 50 22.4 50 23.3 50
AI402 50 2024.4 28 2571.4 19 2193.8 25 2034.9 28
ANI201 50 274.5 50 305.4 50 293.4 50 278.8 50
ANI402 50 3586.0 1 3600.0 0 3582.6 1 3575.9 1

Subtotal 200 1476.9 129 1627.1 119 1523.1 126 1478.2 129

GI125 80 29.6 80 18.6 80 29.5 80 26.8 80
GI250 80 153.2 80 105.2 80 165.2 80 139.9 80
GI500 80 707.2 79 592.0 79 857.0 78 707.3 79
GI750 40 1105.9 39 639.7 39 1249.4 39 1169.0 38
GI1000 40 2332.7 34 1430.5 38 2557.3 23 2332.0 34

Subtotal 320 638.4 312 437.7 316 677.3 300 656.1 311

Table 4: E�ects of adapted settings in the re�ned re�ect+ algorithm

� Using AI/ANI instances as an example, we see that the stabilization of column-generation process
(Setting 3) and the transformation of arti�cial patterns (Setting 4) have no signi�cant e�ect on the
computations. Although this may seem surprising at �rst, we recall that an optimal solution of these
instances must consist exclusively of exact patterns p, i.e., patterns with l>p = l. Since this is also true
for the continuous relaxation, no DOIs can be used in the LP solution, so no transformation of patterns
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occurs either. It is therefore understandable that, except for possible random e�ects, Settings (1), (3),
and (4) basically come to the same results.

� In contrast, however, we see impressively in the example of class AI402 in Table 4 that employing
the subset-sum procedure can lead to a signi�cant improvement in overall performance, since about
50% more instances can be solved optimally. It can be concluded that, unlike the greedy heuristic,
the subset-sum method produces more �useful� patterns with little or no waste. Therefore, noticeably
better feasible SSP solutions can be constructed in the thinned-out networks considered at the various
stages of our overall algorithm. Even if these improvements do not quite reach the level of the re�ect
arc-�ow model from Martinovic et al. (2020), the �ndings make a signi�cant contribution to improving
the classical re�ect+ algorithm presented in Delorme and Iori (2020) in an instance-speci�c way by
clever preprocessing.

� The e�ects for the GI instances are best seen by looking at the most challenging subclass GI1000 in
Table 4. For these instances (with a very large number of di�erent item types), executing column gen-
eration (before entering Level 1 of our algorithm) is already very di�cult and, consequently, omitting
stabilization techniques leads to large performance degradations. More precisely, 11 to 15 instances
less were solved than in all other settings.

� Comparing the number of optimally solved instances with Setting (1) and Setting (4) in Table 4, only
one instance from GI750 stands out that can be solved with our re�ned re�ect+ algorithm, but without
transforming the DDOI columns it is not solved exactly within the time limit. Regarding the average
computation times of these two settings, no signi�cant advantage for the re�ned re�ect+ is apparent
at �rst glance. Except for random e�ects, the computation times hardly di�er. Although here it
seems that the transformation brings only a minimal bene�t, later we will demonstrate a systematic
advantage of this action regarding the levels of re�ect+ that need to be passed.

� It is noticeable that in the GI instances the use of the subset-sum procedure is rather harmful. In
the classes GI125 to GI750 in Table 4, this can be seen above all in the sometimes signi�cantly larger
computation times compared to the mere application of the greedy heuristic. For the most di�cult
class GI1000, one even misses the optimal solution of four instances. To explain this, we give two
reasons: On the one hand, running the subset-sum procedure itself takes signi�cantly more time than
an ordinary greedy procedure, especially when such auxiliary problems have to be solved in advance
for up to m = 1000 di�erent item types. However, from our point of view, the crucial factor is that,
on the other hand, GI instances, in general, do not rely on low-waste patterns in the optimal solution.
Substantial e�ort is invested by the subset-sum procedure to �nally generate patterns that are not
necessarily needed to successfully tackle the given instance. This obviously has a negative overall
impact on the numerical results.

� Last but not least, it is slightly bene�cial to use the path-reduced costs from the pattern-based formu-
lation of the column-generation approach instead of the reduced costs from the re�ect arc-�ow model
in Level 4 of re�ect+. This positive e�ect can be observed in Table 5 which contains only instances
solved exactly in Level 4. The choice of instances is due to the fact that the reduced costs are only
relevant in the last level of re�ect+. Except for GI125 und ANI402, which each contain only one
instance in this case, the average computation time is faster when path-reduced costs are used.

To examine the e�ects just described in more detail, we look at three di�erent ways to design column
generation before entering Level 1 in Table 6. In that table, #tl denotes the number of instances that ran
into the time limit. Moreover, we use #bv and #v to refer to the average number of variables (=patterns)
appearing in a basis solution and the entire column-generation process, respectively. We note that #bv may
be larger than the number of items whenever DDOI columns had to be transformed into true patterns.

None of the AI/ANI instances comes even close to the time limit of one hour, i.e., column generation can
be executed without any problems in any case. Nevertheless, we recognize a positive e�ect of the subset-sum
procedure, since here only about half as large computation times occur and much fewer feasible patterns
have to be dealt with (which is, at the same time, an indication of a smaller number of iterations in column
generation). Once again, there is no signi�cant di�erence between stabilized and unstabilized methods, since,
as mentioned before, the optimal solution cannot contain DDOI columns. In the case of the GI instances, it
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Setting (1) Setting (5)
re�ned reduced cost from
re�ect+ re�ect arc-�ow model

overall time overall time
Instances # time Level 4 #opt time Level 4 #opt

AI201 50 54.3 23.5 6 62.7 31.5 6
AI402 50 1005.4 538.2 9 1217.7 745.6 9
ANI201 50 274.5 244.8 50 287.8 257.8 50
ANI402 50 2902.3 2655.7 1 2801.2 2568.7 1

GI125 80 44.6 31.5 1 21.5 8.6 1

Table 5: The two di�erent ways to calculate the reduced costs in Level 4 of re�ect+: comparison of instances
solved optimal in Level 4

Setting (1) Setting (2) Setting (3)
re�ned re�ect+ only greedy heuristic non-stabilized column generation

Instances # time #tl #bv #v time #tl #bv #v time #tl #bv #v

AI201 50 7.9 0 170.5 9624.7 17.4 0 170.4 15188.6 8.5 0 170.5 9653.0
AI402 50 75.1 0 352.1 31993.5 143.5 0 352.2 38004.3 84.0 0 352.2 32092.5
ANI201 50 8.3 0 169.6 9506.7 18.3 0 169.6 15260.4 9.1 0 169.7 9574.5
ANI402 50 77.5 0 351.4 32077.6 152.0 0 351.5 39250.5 85.6 0 351.6 32256.5

GI125 80 28.9 0 130.8 3565.2 17.9 0 128.3 2319.4 28.8 0 125.0 3657.3
GI250 80 152.3 0 260.3 7988.3 104.3 0 256.3 5484.5 164.4 0 250.0 8352.7
GI500 80 673.1 0 512.2 18956.4 547.1 0 508.2 12554.4 802.8 0 500.0 20244.6
GI750 40 1005.8 0 785.1 32171.3 547.7 0 770.9 23216.9 1116.4 0 750.0 35841.7
GI1000 40 2323.5 6 1033.9 41074.4 1354.7 0 1022.4 33492.8 2552.9 17 1000.0 45014.5

Table 6: Comparison of di�erent column-generation settings

is easy to see that both the subset-sum procedure and the absence of stabilization techniques lead to many
more generated patterns. Therefore, the overall algorithm often runs into the time limit already in this
preparatory step. Nevertheless, in combination with Table 4 it can be said for the set GI1000 that with the
application of the subset-sum method, every instance whose column-generation procedure does not fail at
the time limit could also be solved by the re�ect+ algorithm in the end.

Next, we analyze the relevance of the di�erent levels for re�ect+. For that purpose, Table 7a contains
information up to which level the re�ect+ algorithm was run through for the di�erent instances. We use
#term to specify the number of instances that terminate at this level (solved or timed out), supplementary
#sol refers to the number of instances that were solved on this last level. Concerning the AI set, most
of the instances were solved to optimality on Level 2. Levels 3 and 4 were necessary to solve a few more
instances and only for one instance the optimal solution could already be found on Level 1. Looking at
AI402 isolated, it is noticeable that about half of the instances reaching Level 2 could not be solved on this
level within the time limit. Due to the already mentioned integrality gap of at least one of all ANI instances,
all instances of this class can be solved only (if at all) on the last level of the re�ect+ algorithm. In contrast,
a di�erent picture emerges for the GI set: Nearly all instances are solved to optimality already on the �rst
level. Only one instance of the subclasses GI125, GI500, and GI750 is solved exactly on Level 2. Concluding,
the patterns from the solution of the column-generation procedure are highly relevant for the GI set. While
the patterns from the linear relaxation of the pattern-based formulation are useless for the AI instances,
the larger set of all patterns generated during the column-generation process seems to be bene�cial for the
subsequent levels of the re�ect+ algorithm.
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Level 1 Level 2 Level 3 Level 4

Instances # #opt #term #sol #term #sol #term #sol #term #sol

AI201 50 50 1 1 38 38 5 5 6 6
AI402 50 28 � � 33 17 2 2 15 9
ANI201 50 50 � � � � � � 50 50
ANI402 50 1 � � 30 � 1 � 19 1

GI125 80 80 78 78 1 1 � � 1 1
GI250 80 80 80 80 � � � � � �
GI500 80 79 79 78 1 1 � � � �
GI750 40 39 39 38 1 1 � � � �
GI1000 40 34 34 34 � � � � � �

(a) Default Setting (1): with pattern retransformation after column-generation process

Level 1 Level 2 Level 3 Level 4

Instances # #opt #term #sol #term #sol #term #sol #term #sol

GI125 80 80 78 78 � � 1 1 1 1
GI500 80 79 79 78 � � 1 1 � �
GI750 40 38 39 38 � � 1 � � �

(b) Setting (4): without pattern retransformation after column-generation process (only rows
with di�ering entries are displayed)

Table 7: Comparison of reached levels of re�ned re�ect+ algorithm

As already mentioned before, it is important to transform a solution containing DDOI columns into
a pure-pattern solution. A comparison of the data from Tables 7a and 7b provides a rationale for this:
Table 7b is structured in the same way as the prior Table 7a and contains the data of Setting (4) from
Table 4. For more clarity, there are only listed instance sets with instances that were solved to optimality on
a di�erent (later) level than in Table 7a with the re�ned re�ect+. We can see the reason why re�ect+ solved
one instance more to optimality of subclass GI750 in comparison to Setting (4). While the transformed
pure-patterns from the column-generation process su�ce to build the optimal integer solution, the patterns
of the column-generation solution including DDOI columns lost valuable information that is necessary for
the optimal solution. Therefore this instance needs to run through the next Level 3 where the time limit
is exceeded an no solution is found. In GI500 and GI750 are two additional instances with the same
behaviour, but in these cases the instances can be solved successfully in Level 3. These examples do not
lead to substantial improvements of the average computational time, but it is clearly a systematic bene�t.

Finally, we compare the di�erent settings with the help of performance pro�les (Dolan and Moré, 2002).
For a set of algorithms S (the �ve settings in our case), the performance pro�le ρS(τ) of an algorithm S ∈ S
describes the ratio of instances that can be solved by S within a factor τ compared to the fastest algorithm,
i.e. ρS(τ) =

∣∣{I ∈ I : tSI /t
∗
I ≤ τ

}∣∣ / |I| in which I is the set of instances, tSI is the computation time of
algorithm S when applied to instance I ∈ I, and t∗I is the smallest computation time among all algorithms
of set S for instance I. Unsolved instances are taken into account with tSI =∞ (assuming also that t∗I =∞
gives tSI /t

∗
I =∞). In particular, the values of a pro�le at the two points τ = 1 and τ =∞ can be interpreted

well: ρS(1) is the percentage of instances for which S is the fastest, and ρS(∞) is the percentage of instances
that are solved by S within the time limit.

Figure 2 shows the performance pro�les comparing the �ve settings separately for the AI/ANI and GI
instances. Many of the above �ndings can be con�rmed now. For the AI/ANI instances, see Figure 2a, the
default setting of the re�ect+ algorithm that integrates all four new algorithmic components is for 37% of
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(a) For the AI/ANI instance
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(b) For the GI instance

Figure 2: Performance pro�les of the �ve di�erent settings of the re�ect+ algorithm; note the logarithmic
scale of the τ -axis

the instances the fastest algorithm. Almost the entire pro�les ρSetting (1)(τ) is above all other pro�les of
all other settings, characterizing the default re�ect+ algorithm as the clear winner here. The subset-sum
procedure is the most bene�cial algorithmic component for the AI/ANI instances, as can be seen from the
pro�le of Setting (2). Settings (3)�(5) are a little bit inferior to the default setting with only Setting (3)
solving signi�cantly fewer AI/ANI instances to proven optimality.

The relationship between the default setting and Setting (2) not using the subset-sum procedure is com-
pletely opposite for the GI instance, see Figure 2b. The re�ect+ version without the subset-sum procedure
shows a striking performance: It is the fastest algorithm for 89% of the GI instances. It is also superior
regarding the instances solved exactly with the one-hour time limit, but the absolute number of optima is
comparable to all other settings but Setting (3). This is what we already found in Table 4 and explained by
the need of stabilizing the column-generation phase in particular for the large-scale GI instances.
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6. Conclusions

In this article, we have introduced a re�ned re�ect+ algorithm with algorithmic components tailored
to the SSP. In general, this solution strategy is a multi-stage procedure, based largely on the fact that
an optimal solution can often be found even if not all arcs of the ordinary re�ect model are included, see
(Delorme and Iori, 2020). Therefore, feasible points in thinned-out graphs are �rst determined, and then
an attempt is made to prove their optimality using appropriate bounds. If this fails, an adapted (larger)
network is considered in the next step. On the basis of extensive test calculations with di�erent challenging
benchmark classes, it can be shown that with this approach a large number of instances can be solved
optimally for the �rst time. Within the context of these numerical investigations, we work out precisely the
performance contributions of any of the re�nements we have applied to the basic re�ect+ algorithm. Thus,
we succeed in obtaining valuable insights into the general numerical behavior of various instance classes and
are able to derive concrete recommendations for their e�cient practical treatment.

For future research, two main issues are particularly interesting:
(1) One e�ect observed during the computational evaluation remains unclear to us even after analyzing in

detail the instance classes and their behaviour of reaching and passing the di�erent levels of the re�ect+
algorithm: While using the subset-sum procedure to equip the column-generation phase with columns
of very good (exact) patterns, producing no or almost no loss, this component is clearly bene�cial for
the di�cult AI/ANI benchmark, but rather harmful for the large-scale GI benchmark. Future research
might �nd new ways to analyze and better understand this part of the column-generation process and
its impact on subsequent phases of re�ect+.

(2) The work of de Lima et al. (2022b) exploits pseudo-polynomial formulations in a innovative fashion
presenting an approach using column generation and its reduced-cost information to de�ne a kind of
core subproblems solved separately with an ILP solver. This is possible because of a completely new
branching scheme for the subproblems. Overall, the approach of de Lima et al. combines important
techniques also used in re�ect+ in a new way. It would be interesting to see results of this and other
new approaches also for the challenging and AI/ANI and GI benchmarks.
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