
Inter-Depot Moves and Dynamic-Radius Search for Multi-Depot Vehicle
Routing Problems

Jean Bertrand Gauthier∗,a, Stefan Irnicha

aChair of Logistics Management, Gutenberg School of Management and Economics,
Johannes Gutenberg University Mainz, Jakob-Welder-Weg 9, D-55128 Mainz, Germany.

Abstract

Dynamic-radius search, formerly known as sequential search, is an effective neighborhood exploration tech-
nique for standard edge-exchange neighborhoods such as 2-opt, 2-opt*, swap, relocation, Or-opt, string
exchange, etc. Up to now, it has only been used for vehicle routing problems with a homogeneous fleet
and in the single-depot context. In this work, we extend dynamic-radius search to the multi-depot vehi-
cle routing problem, in which 2-opt and 2-opt* moves may involve routes from different depots. To this
end, we equip dynamic-radius search with a modified pruning criterion that still guarantees identifying
a best-improving move, either intra-depot or inter-depot, with little additional computational effort. We
experimentally confirm that substantial speedups of factors of 100 and more are achieved compared to an
also optimized implementation of lexicographic search, another effective neighborhood exploration technique
using a feasibility-based pruning criterion. As one would expect, better local optima are found on average
when allowing inter-depot moves in radius search (positive result). Against intuition, we do however not
end up with a better ILS metaheuristic regarding best found solutions, i.e., better average results do not
translate into better overall results. We can at least partly explain the latter negative result, which might
be useful for other researchers and their attempt to algorithmically optimize their neighborhood exploration
procedures.

Key words: Routing, Local search, Sequential search, Dynamic-radius search, Inter-depot

1. Introduction

This paper extends the realm of application of dynamic-radius search, an effective neighborhood explo-
ration technique, to the multi-depot vehicle routing problem (MDVRP). Escobar et al. (2014) note that it is
rather straightforward to extend most classical neighborhoods to the multi-depot environment except 2-opt
and 2-opt*. The description is however quite limited so we formalize the various inter-depot cases that arise
in these two neighborhoods and sketch a few others that work naturally with multi-depot. This analysis
also serves to equip dynamic-radius search with a modified pruning criterion so that best-improving moves
which allow inter-depot edges are found with little additional computational effort. The idea behind this
work revolves around the hypothesis that being systematically able to find moves with better gains leads
to a local search that can find better local optima. Our analysis leads to positive and negative results.
The positive result is that allowing inter-depot moves helps finding better local optima on average. This
unfortunately does not translate to the meta-strategy where ultimately only the overall best local optimum
is important. While one can compare this best gain idea to Dantzig’s pivot rule in the primal simplex
algorithm for which it is known that alternative less myopic rules perform better, it is not immediately clear
to us that the behavior of a heuristic would be the same as that of an exact method.

∗Corresponding author.
Email addresses: jgauthie@uni-mainz.de (Jean Bertrand Gauthier), irnich@uni-mainz.de (Stefan Irnich)

Technical Report LM-2022-04 July 11, 2022

Dynamic-radius search builds on several classical works on the symmetric traveling salesman problem
(TSP). In the context of the TSP, Hoos and Stützle (2005) use the expression fixed-radius search to col-
lectively describe the idea of Steiglitz and Weiner (1968) and numerous extensions such as Bentley (1992);
Martin et al. (1992); Reinelt (1994); Johnson and McGeoch (1997). For each vertex i, the predecessor pi and
successor si in the current TSP tour must be known. Then, for finding improving 2-opt and 3-opt moves,
the neighborhood exploration procedures first loop over all vertices i to determine a first deleted edge (pi, i)
or (i, si). The first inserted edge e = (i, j), replacing the deleted edge, must now be shorter, i.e., cij < cpi,i
or cij < ci,si , respectively. This can be interpreted as choosing j as a neighbor of i within the known radius
given by cpi,i or ci,si . For 3-opt, the second decision about the second edge to insert must again produce
a positive accumulated gain. This selection criterion for inserted edges is know as the gain criterion. Lin
and Kernighan (1973) always choose edges according to the gain criterion in their famous Lin-Kernighan
variable-depth neighborhood. Irnich et al. (2006) have generalized this idea of using the gain criterion for the
(capacitated) vehicle routing problem ((C)VRP) and to VRP-specific moves such as node/vertex relocation,
Or-opt, string exchange, etc. Moreover, Irnich (2008b) has shown that these techniques can be further gen-
eralized to handle more constrained versions of the VRP such as the VRP with time windows, the periodic
VRP, pickup-and-delivery problems, and others.

Irnich et al. (2006) have introduced dynamic-radius search for VRPs under the name sequential search.
This naming was inspired by the fact that moves are decomposed into partial moves and complete moves
result from sequentially selecting the constituting partial moves. Note that cyclic independent move decom-
position as coined in Irnich et al. (2006) relies on the fact that all 2-opt and 3-opt moves can be characterized
by a single alternating cycle of deleted and added edges (see Funke et al. 2005; for a deeper analysis of single
alternating cycle TSP neighborhoods). However, the term sequential search might nowadays be confused
with single-threaded algorithms opposed to parallel/multi-threaded algorithms. Moreover, we think that
the term radius better captures the idea of pruning the search tree using the gain criterion whereas dynamic
follows in the footstep of the aforementioned fixed version. Certainly not taken lightly, we finally opt for
this name change decision.

A formal definition of the MDVRP is in order. It can be defined over a complete undirected graph G =
(V,E) where the vertex set V consists of customers N and depots D. Each customer i ∈ N has a positive
demand qi and we define qd = 0 for every depot d ∈ D. Moreover, a fleet of m homogeneous vehicles
characterized by a capacity Q and a maximal tour duration T (one of these limits may be omitted) are
stationed at each depot d ∈ D. A global fleet-size limit κ ≤ m |D| on the number of vehicles may also be
given. The edge set E models direct connections between customers as well as depots and customers. For
each edge e ∈ E, a routing cost ce and a travel time te are given. A route for depot d ∈ D is a directed cycle
r = (d = i0, i1, i2, . . . , ip, ip+1 = d) in which all vertices i1, i2, . . . , ip ∈ N are different customers. A route r
is feasible if it is capacity feasible, i.e.,

∑
i∈V (r) qi ≤ Q, and duration feasible, i.e.,

∑
e∈E(r) te ≤ T , where

V (r) denotes the set of vertices and E(r) the set of edges of r. The cost of a route r is cr =
∑
e∈E(r) ce.

Let Rd denote the subset of all feasible, non-empty routes associated with depot d ∈ D. A set R of
feasible routes is a solution to the MDVRP if (1) the local and global fleet-size limits are not exceeded, i.e.,
|R ∩Rd| ≤ m for all d ∈ D and

∑
d∈D |R ∩Rd| = |R| ≤ κ, and (2) all customers are serviced exactly once,

i.e., N =
⋃
r∈R(V (r) ∩N) and V (r1) ∩ V (r2) ∩N = ∅ for all r1 6= r2 ∈ R. Such a solution is optimal if it

minimizes the (total) routing costs c(R) =
∑
r∈R cr.

Our overall experimental setup uses a rather simple multi-start neighborhood-based local search approach
detailed in Section 5. We sketch it now in order to specify precisely the terminology. A neighborhood (e.g.,
2-opt) uses moves to map a solution to alternative solutions called neighbors. We assume that the available
neighborhoods are given by a set Ψ. Hence, for a given neighborhood N ∈ Ψ and current solution R, a
move µ ∈ N produces from R the neighbor solution R′ = µ(R). A move is improving if its marginal gain
defined as g(µ,R) = c(R)− c(µ(R)) (or simply g when contextually clear) is positive, i.e., g > 0. Moreover,
a solution R is a local optimum w.r.t. N if no improving move µ ∈ N for R exists. Neighborhood exploration
is the systematic search for an improving move and associated improving solution. We assume here that the
exploration filters out infeasible solutions. Moreover, the pivoting rule (such as first improvement or best
improvement) controls whether and (if so) when neighborhood exploration is stopped before all possible

2

moves are considered. Finally, each constructed starting solution R is improved by iterative neighborhood
explorations. One of the possible neighborhood exploration technique is dynamic-radius search and we
discuss its relationship to other techniques in Section 3.

We combine the neighborhoods N ∈ Ψ in a variable neighborhood descent (VND) fashion, i.e., the
neighborhoods N ∈ Ψ are parameterized and the choice of a next neighborhood to explore is determined
according to a priority parameter of each neighborhood. For each starting solution R, we finally settle on a
heuristic solution R̃ which is a local optimum with respect to all N ∈ Ψ. This solution R̃ depends on the
starting solution R, the available neighborhoods Ψ, and for each neighborhood N ∈ Ψ, its prioritization in
VND, its pivoting rule, and its neighborhood exploration strategy. We study the trade-off between solution
quality and the time it takes to find joint local optima R̃.

The remainder of this paper is structured as follows: In Section 2, we briefly recall 2-opt and 2-opt*
moves for VRPs distinguishing intra/inter-tour moves as well as intra/inter-depot moves. Section 3 dis-
cusses neighborhood exploration techniques. The new radius search algorithm for efficiently exploring the
extended neighborhoods with inter-depot 2-opt and 2-opt* moves is presented in Section 4. The multi-start
neighborhood-based local search approach that we use as a simple metaheuristic is explained in Section 5.
Computational results follow in Section 6. Final conclusions are drawn in Section 7.

2. 2-Opt and 2-Opt* Moves in Multi-Depot Vehicle Routing Problems

Notation. A convenient representation of a solution R is obtained by concatenating all routes, in any order
and orientation, as one long sequence of vertices. This is known as the giant route or giant tour representation
(Bellmore and Hong 1974). In the following, the resulting sequence, denoted V, allows us to loop over relevant
vertices by writing i ∈ V. In order to have a unique predecessor pi and a unique successor si for each vertex
i ∈ V, the sequence V must include different copies of the depots, two for each route in order to also
distinguish between its source and sink depots (which must represent the identical physical depot). For any
route r ∈ R, let the first and last visited customers be denoted by fr and lr ∈ N , respectively. Moreover,
a reference to the original depot is given by dr ∈ D. In particular, any two routes r and r′ are associated
with the same depot if and only if dr = dr′ . For any vertex i ∈ V , its associated route is denoted by ri ∈ R.
Finally, we define the corresponding depot di of vertex i as dri , the first customer fi as fri , and the last
customer li as lri .

Legend. A consequence of having chosen an orientation for each route is that we can depict and write
solutions with directed arcs instead of undirected edges. Indicating the direction of traversal makes reading
and understanding the following figures easier. However, the underlying MDVRP is still assumed to be
symmetric. In the following figures, a snake-shaped link between vertices w and v forms a directed path of
arbitrary length (written as w v or v ← w when it is an inversion of a given path) whereas a straight link
indicates a single arc. A solid connection keeps its orientation once the move is completed while a dashed
one is inverted as a consequence of the move. An arc is marked for deletion with a loosely dotted pattern
while a densely dotted one indicates an insertion. Affected vertices are filled in solid color when they are
chosen and a lighter shade when they are implied by a choice. This shading rule also applies when deleted
and inserted arcs are implied to repair an otherwise infeasible move. Finally, customers take on circle-shaped
vertices whereas different depots are explicitly distinguished by different polygon-shaped vertices (squares
and pentagons).

Developed with the TSP in mind, Croes (1958) has devised an algorithm which performs so-called
inversions. These are essentially 2-opt exchanges in the sense Lin (1965) has generally coined λ-opt. The 2-
opt neighborhood has been generalized to single-depot vehicle routing problems in a straightforward manner.
Potvin and Rousseau (1995) have introduced the 2-opt* neighborhood to tackle the vehicle routing problem
with time windows (VRPTW, Desaulniers et al. 2014). The leading observation is that a 2-opt inter-tour
move induces two segment inversions in the affected routes (see Figure 1b). A 2-opt* move differs from the
latter in that it maintains the general ordering of the customers in the current solution and is thus more
likely to produce an alternative solution feasible with respect to time windows (see Figure 1c).

3

di i si di

j sj

ci,si

cj,sj

cij
csi,sj

(a) 2-opt intra-tour.

di i si di

dj j sj dj

ci,si

cj,sj

cij csi,sj

(b) 2-opt inter-tour, di = dj .

di i si di

dj j sj dj

ci,si

cj,sj

ci,sj
cj,si

(c) 2-opt*, di = dj .

Figure 1: Intra-depot 2-opt and 2-opt* moves.

The canonical description of both 2-opt and 2-opt* can be done with two deleted edges (i, si) and
(j, sj) as well as two inserted edges. In the 2-opt case, the inserted edges are (i, j) and (si, sj) whereas
in the 2-opt* case they are (i, sj) and (j, si). The gain of these moves can then be computed for 2-opt as
g = ci,si + cj,sj − cij − csi,sj and for 2-opt* as g = ci,si + cj,sj − ci,sj − cj,si . This description however
only holds if we face an intra-depot move, that is, a move that affects a single route (intra-tour) or two
routes (inter-tour) related to the same depot. Figure 1, which uses our multi-depot notation, therefore only
captures intra-depot 2-opt and 2-opt* moves.

In the next two subsections, we show that the multi-depot case can nevertheless be correctly taken into
account during the analysis of an inter-depot move. Observe that an inter-depot move must necessarily
be inter-tour. In both neighborhoods, 2-opt and 2-opt*, we break down the possible cases that arise and
must be covered by an exhaustive neighborhood exploration. In particular, an edge exchange infeasibly
connecting two different depots can be repaired in either of two different ways. Our various visual aids give
the final interpretation of the traditional neighborhood move together with a repair operation that must
be performed to ensure each route has matching source and sink depots. Moreover, we show that all final
move configurations fall under well-defined cases (standard, exception, and rejection, see below). The gain
computation of the final move is of course affected as a byproduct of the repair operation. It is opportune
at this point to separate the presentation of 2-opt and 2-opt*.

2.1. Inter-Depot 2-Opt*
An inter-depot 2-opt* move happens when the two deleted arcs (i, si) and (j, sj) belong to two different

routes ri 6= rj of two different depots di 6= dj . As illustrated in Figure 2, eight cases are sufficient to
exhaustively cover repair options. Figures 2a and 2b display the standard case where both deleted arcs
(i, si) and (j, sj) are either not the two first arcs or not the two last arcs in their respective routes ri and
rj . This offers two possibilities of swapping the depots: swapping at the source (Figure 2a) and at the sink
(Figure 2b). Note that both cases allow the deleted arcs (i, si) and (j, sj) to be at the opposite end of the
two routes, so that the new tours are then (di, fj lj , di) and (dj , fi li, dj). This is the special case of
an exchange of two complete routes between two different depots.

The next four exception cases depicted in Figures 2c–2f happen if exactly one of the deleted arcs is the
first (last) and the other one is not the first (not the last). In the exception cases, only three arcs instead
of four are finally exchanged, one of the arcs inserted in the standard case is absent (arc (i, sj) or (j, si)).
Note that the four cases result from the inherent symmetry, on the one hand between the two routes ri and
rj (swapping the indices i and j), and on the other hand, between source and sink (reversal of the routes’
orientation).

The first six cases shown in Figures 2a–2f cover all feasible inter-depot 2-opt* moves. There exist two
more cases visualized in Figures 2g and 2h: (left) depot swap of the source depots with i = di and j = dj
and (right) depot swap of the sink depots with si = di and sj = dj . These cases are however infeasible
because the initially chosen arcs for deletion coincide with the two arcs that one wants to delete to perform
the source (sink) depot swap.

Ultimately, every 2-opt* inter-route move with different depots di 6= dj is evaluated with two repair
operations (one source and one sink) based on the expressed conditions yielding up to two distinct inter-
depot 2-opt* moves. Note that the conditions on i and j shown on the left-hand side of Figure 2 are

4

di fi i si li di

dj fj j sj lj dj

cdi,fi ci,si

cdj ,fj cj,sj

cj,si
ci,sjcdi,fj

cdj ,fi

(a) Standard case: i 6= di, j 6= dj .

di fi i si li di

dj fj j sj lj dj

ci,si cli,di

cj,sj clj ,dj

cj,si
ci,sj clj ,di

cli,dj

(b) Standard case: si 6= di, sj 6= dj

di fi li di

dj fj j sj lj dj

cdi,fi

cdj ,fj cj,sj

cj,ficdi,fj

cdj ,sj

(c) Exception case: i = di, j 6= dj , arc (i, sj) is absent.

di fi i si li di

dj fj lj dj

ci,si cli,di

clj ,dj

cj,si
cli,dj

ci,di

(d) Exception case: si 6= di, sj = dj , arc (i, sj) is absent.

di fi i si li di

dj fj lj dj

cdi,fi ci,si

cdj ,fj

cdi,si

cdj ,fi ci,fj

(e) Exception case: i 6= di, j = dj , arc (j, si) is absent.

di fi li di

dj fj j sj lj dj

cli,di

cj,sj clj ,dj

ci,sj

cj,dj

clj ,di

(f) Exception case: si = di, sj 6= dj , arc (j, si) is absent.

di fi li di

dj fj lj dj

cdi,fi

cdj ,fj

cdi,fj
cdj ,fi

(g) Rejection case: i = di, j = dj .

di fi li di

dj fj lj dj

cli,di

clj ,dj

clj ,di
cli,dj

(h) Rejection case: si = di, sj = dj .

Figure 2: Inter-depot 2-opt* moves, swap of source (left) or sink (right) depots.

independent from the conditions on si and sj shown on the right-hand side. For example, if i = di and
j 6= dj holds (case 2c), exactly one of the four cases 2b, 2d, 2f, or 2h is true for si and sj .

2.2. Inter-Depot 2-Opt
For the 2-opt neighborhood, we also raise standard and exception cases as presented in Figure 3, but omit

rejection cases for the sake of brevity. The repair operation must always swap sink and source depots of the
two different routes. As a mnemonic device, depots finally always remain attached to their current route.
In the swap cases 3a, 3c, and 3e, the source/sink roles are preserved, whereas the roles are interchanged in
the swap cases 3b, 3d, and 3f.

3. Neighborhood Exploration Techniques

In the following, we describe and compare the three fundamental neighborhood exploration techniques
in local search: lexicographic search, radius search, and granular search. The organization follows this order
and we complete these descriptions in Section 3.4 with a comparison and summarizing remarks.

Regardless of the way a neighborhood is explored, the two bottleneck operations of testing moves are:
the gain computation and the feasibility check. For the gain computation, it can be straightforward as is the

5

di fi i si li di

dj fj j sj lj dj

ci,si
cli,di

cdj ,fj cj,sj
cij csi,sj

cfj ,di

cdj ,li

(a) Standard case: si 6= di, j 6= dj .

di fi i si li di

dj fj j sj lj dj

cdi,fi ci,si

cj,sj clj ,dj
cij csi,sj

cdj ,fi

lj , cdj

(b) Standard case: i 6= di, sj 6= dj .

di fi li di

dj fj j sj lj dj

cli,di

cdj ,fj cj,sj
cli,j

cfj ,di

cdj ,sj

(c) Exception case: si = di, j 6= dj , arc (si, sj) is absent.

di fi li di

dj fj j sj lj dj

cdi,fi

cj,sj clj ,dj

cdj ,j

cfi,sj

clj ,di

(d) Exception case: i = di, sj 6= dj , arc (i, j) is absent.

di fi i si li di

dj fj lj dj

ci,si cli,di

cdj ,fj

ci,di

csi,fj

cdj ,li

(e) Exception case: si 6= di, j = dj , arc (i, j) is absent.

di fi i si li di

dj fj lj dj

cdi,fi ci,si

clj ,djci,lj

csi,di

cdj ,fi

(f) Exception case: i 6= di, sj = dj , arc (si, sj) is absent.

Figure 3: Inter-depot 2-opt moves, source/sink depot roles are preserved (left) or interchanged (right).

case in the studied variant or involved, e.g., needed when computing route durations in the presence of time-
dependent travel times as proposed by Visser and Spliet (2020). For the feasibility check, it is almost never a
trivial task as per the inclusion of non-additive resource constraints. In accordance with Savelsbergh (1990);
Irnich (2008b); Vidal et al. (2014), several resource constraints can nevertheless be tested in constant time
by doing precomputations on the current solution and some segments of arcs (consecutive arcs in the current
solution). For the latter computations, segments have to be built-up in a vertex-by-vertex fashion, leading
to the lexicographic search paradigm. Constant time tests are well established for capacity, time-window,
and pickup-and-delivery constraints. In the following, we use the 2-opt intra-tour move (see Figure 1a) to
explain the different search paradigms. A synopsis of the three search principles is shown in Figure 4.

3.1. Lexicographic Search
Lexicographic search as presented by Savelsbergh (1990) consists of an elegant and systematic way to

explore a neighborhood using the customer order observed in the current solution. It is especially intuitive
for k-edge exchange moves. For exploring the 2-opt neighborhood, lexicographic search explores the vertices i
and j using the order given by V in two nested loops, see Algorithm 1. The first loop iterates over i ∈ V
whereas the second loop steps over j > i ∈ V. Hence, the inner loop iterator is always greater than the
preceding outer loop while still covering all possibilities for the 2-opt moves.

The key observation, see also Figure 1a, is that in the inner loop the new route of vertex i must contain
the path P = (di i, j

←
 si), where the orientation of original path (si j) has been inverted. Since

path P grows by one vertex in every inner-loop iteration, the idea of Savelsbergh (1990) is to prune the
search based on the local infeasibility of P (see first if-condition in Algorithm 1), that is, break the inner
loop if it can be shown that any further vertex in P always leads to a resource-infeasible move. Since this
is a necessary but not sufficient condition for the feasibility of the overall move, a global feasibility check

6

Algorithm 1: Lexicographic.
γ ← 0
for i ∈ V

for j ∈ V ∩ V (ri) | j > i

P ← (di i, j
←
 si)

if P local infeasible
break

if infeasible or g ≤ γ
continue

(γ,
¯
i,

¯
j)← (g, i, j)

return (g∗ = γ, i∗ =
¯
i, j∗ =

¯
j)

Algorithm 2: Radius.
γ ← 0
for i ∈ V, (pi, i) and (i, si)

Compute ρ
for j ∈ N(i)

if cij ≥ ρ
break

if infeasible or g ≤ γ
continue

(γ,
¯
i,

¯
j)← (g, i, j)

return (g∗ = γ, i∗ =
¯
i, j∗ =

¯
j)

Algorithm 3: Granular.
γ ← 0
for u = 1, . . . , U

for (i, j) ∈ Au

if infeasible or g ≤ γ
continue

(γ,
¯
i,

¯
j)← (g, i, j)

if γ > 0

break
return (γ,

¯
i,

¯
j)

Figure 4: Synopsis of the three neighborhood exploration methods for the intra-depot 2-opt neighborhood.
It is assumed that both the feasibility and gain of a move are evaluated directly before the if-condition
“infeasible or g ≤ γ” is reached.

(see second if-condition in Algorithm 1) must be performed. Note that in an inter-tour move, the inner loop
would skip the remaining vertices sj , . . . , dj of route rj rather than break.

For capacity constraints, the local feasibility of P and any path constructed in later iterations of the
inner loop amounts to checking

∑
i∈V (P) qi ≤ Q (always fulfilled in the intra-tour case). Assuming that the

triangle inequality holds for travel times, route duration constraints necessarily require
∑
e∈E(P) te ≤ T .

For the MDVRP, all this can be tested in O(1) by summing up demand and travel times for the segment
(di i) (outer loop over i) and the segment (j

←
 si) (inner loop over j).

More intricate feasibility conditions such as time windows, pairing, precedence constraints, and many
more can be checked in O(1) as well. Recall that the 2-opt intra-tour move results in the new route
(di i, j

←
 si, sj di) = (P, sj di). As a preparatory step, one must compute an upper bound on

the resource consumption when arriving at the last segment (sj di). This requires a O(n) preparation
before the exploration is started. Then, the outer loop computes the resource consumption at the end of the
first segment (di i), while the inner loop computes the resource extension function (Irnich 2008a) for the
second segment (j

←
 si) so that both the resources at the end of P and its local feasibility are determined

in O(1). To check global feasibility, the latter resource values are then propagated along the arc (si, sj) and
compared against the respective resource upper bounds that were computed in the preparatory step.

Summarizing, the effectiveness of lexicographic search stems from its feasibility-based pruning. It is
particularly well suited for a VRP with intricate or very constraining feasibility constraints. If both checking
its resource consumption and propagating resource levels over entire segments can be done in constant time,
there is no extra effort in the worst-case time complexity when exploring a neighborhood. For 2-opt, the
result is a O(n2) neighborhood exploration.

3.2. Radius Search
The idea of accelerating the neighborhood exploration based on the length of the inserted arc can done

with a priori computed bounded candidate lists. This idea can be combined with pruning using the gain
criterion. Finally, Irnich et al. (2006) sharpened the gain criterion by incorporating the quality of already
detected improving solutions. Accordingly, we present candidate-lists based search (Section 3.2.1), fixed-
radius search (Section 3.2.2), and dynamic-radius search (Section 3.2.3). In all variants, neighbor lists sorted
according to arc costs are created once in initialization. For the special case of costs defined by Euclidean
distances, one can imagine the search being conducted starting from the closest neighbor and spiraling
outwards until some break condition is met. (This break condition remains correct in the non-Euclidean
case.) Note that the break condition is identical for 2-opt intra- and inter-tour moves so that implementations
of radius search naturally consider both types of moves together.

7

3.2.1. Bounded Candidate-Lists based Search
Bounded candidate-lists based search follows the idea that good arcs to be inserted should have a small

cost. It initially builds, for each vertex i, a bounded length candidate list N(i) of neighbor vertices j in close
proximity of i. The neighbor j ∈ N(i) represents the arc (i, j), and only moves inserting the arc (i, j) with
j ∈ N(i) are considered as possible moves. In a naive implementation, a fixed size σ for the neighborhoods
is chosen first (e.g., 50 neighbors) and N(i) is then filled with the σ closest vertices.

In Algorithm 2, the first if-condition for breaking the inner loop is never fulfilled for a non-constraining
radius such as ρ = ∞. A speedup solely results from the bounded candidate lists, because it reduces the
number of arcs (i, j) to be tested. Indeed, for a fixed size σ the considered search space becomes linear in |V|.
Obviously, it is however not guaranteed that a true local optimum is found as long as σ = |N(i)| < |δ(i)|.

Another way to interpret bounded candidate-lists based search is to see it as a radius search, as depicted
in Algorithm 2, where the radius ρ is not computed inside the outer loop. Instead, ρ is a priori chosen (for
each i possibly in a different way) so that the inner for loop and if-condition can be implemented by filling
N(i) appropriately.

For the TSP, bounded candidate lists have also been constructed on the basis of other criteria. Helsgaun
(2000), for example, uses a modified edge weight/cost obtained from an approximation of the Held-Karp
lower bound. For the tested instances, all edges of an optimal TSP solution were shown to be contained
in candidate lists of smaller size σ. No general guarantee can be given for arbitrary instances. In contrast,
the fixed-radius search presented next follows a different line of thought in order to achieve provably local
optimal solutions.

3.2.2. Fixed-Radius Search
In routing problems, a move µ comprises the deletion of some arcs and the insertion of the same number

of different arcs. It can therefore be decomposed into a number k of partial moves p1, . . . , pk, i.e., µ =
p1 ◦ p2 ◦ · · · ◦ pk, each of which deletes and inserts some of the arcs.

Definition 1. (Irnich et al. 2006) A move µ is cyclic-independent if µ = pπ(1) ◦pπ(2) ◦ · · · ◦pπ(k) for all cyclic
permutations of {1, 2, . . . , k} and it is and cost-independent if g(µ) =

∑k
i=1 g(pi), where g(pi) is a partial

gain associated with pi.

A neighborhood with cyclic-independent and cost-independent moves can be searched with the gain
criterion in light of the following theorem:

Theorem 1. (Lin and Kernighan 1973) If a sequence of k numbers (gi)i={1,...,k} has a positive sum, i.e.,∑k
i=1 gi > 0, then there exists a cyclic permutation π of these numbers such that every partial sum is positive,

i.e.,
∑`
i=1 gπ(i) > 0 for all 1 ≤ ` ≤ k.

Note that neither Definition 1 nor Theorem 1 claim that for a given neighborhood the move decomposition
is unique. Let us exemplify the gain criterion for intra-depot 2-opt moves as depicted in Figures 1a and 1b.
First, an improving 2-opt move µ has a gain g = g(µ) = ci,si − cij + cj,sj − csi,sj > 0. Second, to satisfy
Definition 1, one can decompose it into µ = p1 ◦p2 = p2 ◦p1, where one partial move p1 is deleting arc (i, si)
plus inserting arc (i, j) and another partial move p2 is deleting arc (j, sj) plus inserting arc (si, sj). From
Theorem 1, we obtain that g = g(p1) + g(p2) > 0 is improving only if

g(p1) = ci,si − cij > 0 or g(p2) = cj,sj − csi,sj > 0. (1)

This is a necessary condition for move µ to be improving. By handling both options of the compound
condition (1), we obtain independent radius conditions based on the cost of two different deleted arcs (i, si)
or (j, sj). This can be exploited algorithmically as done with the break condition in Algorithm 2 which
makes fixed-radius search effective: given a vertex i, only those neighbors j ∈ N(i) which fulfill the first
radius condition cij < ρ with ρ = ci,si need to be inspected.

We have to underline that one must ensure that a move rejected from one partial move can be recovered
when the other is analyzed. This can be easily overlooked when simplifying the loop design. Indeed, when

8

testing the deleted arc (i, si) with j ∈ N(i) and later interchanging the roles of the vertices as (j, sj) with
i ∈ N(j), we can observe two facts: we may evaluate the same move twice, and we have never evaluated
the second radius condition. The former point is a nuisance, but the latter point implies that this is an
incomplete examination of the compound condition (1). Additionally testing over neighbors sj ∈ N(si) such
that csj ,si < ρ however makes the search exhaustive. Indeed, one can verify that once again interchanging
the roles of i and j yields a deleted arc (j, sj) with si ∈ N(sj). For the reader keeping count, we are
evaluating in the worst case the same move four times. Among these overlapping move evaluations, two are
mandatory to ascertain a complete examination of the neighborhood space and two are redundant by cost
symmetry. Since it is impossible to know in advance which of the two partial gains, if any, could fulfill its
radius condition, the redundancy is in principle unavoidable by the conservative nature of the gain criterion.
As supported by our computational results, we however claim that this redundancy is in practice more
limited than what transpires by this quadruple factor (see also the example presented in the next section).

Finally, two equivalent nested loop constructions are possible: an outer loop i ∈ V followed by two inner
loops j ∈ N(i) and sj ∈ N(si), or alternatively an outer loop i ∈ V for which both deleted arcs (pi, i) and
(i, si) are tested followed by a single inner loop j ∈ N(i). We retain the latter presentation in Algorithm 2
for aesthetics reasons but advice the former for low-level efficiency. Indeed, looking at the finer details of the
implementation, measurable speedup comes from tailoring neighbor lists to the specific inner loops j ∈ N(i)
and sj ∈ N(si) to include or exclude depot arcs, i.e., arcs having a depot copy as an end vertex. Moreover,
for 2-opt we see in Section 4.2 that the evaluation of the so-called multi-depot threshold can be simplified
by using the same base term which only depends on the deleted arc (i, si).

At this point, we would also like to mention that the 2-opt move can also be decomposed in a different
way. If the one partial move is deleting (i, si) and inserting (si, sj), the other partial move is deleting
(j, sj) and inserting (sj , i). Anyway, this decomposition is also asymmetric and therefore also requires the
distinction of two cases.

Finally, fixed-radius search can use the complete candidate list N(i) for every vertex i, i.e., σ = |V | − 1
as long as computer memory permits the storage of O(n2) elements. Complete candidate lists require a
O(n2 log n) preprocessing, where each candidate list is sorted. Using complete candidate lists ensures that
fixed-radius search terminates in a local optimum.

3.2.3. Dynamic-Radius Search
As first discussed by Irnich et al. (2006), the gain criterion can be sharpened if a lower bound γ on the

best gain g∗ is known, e.g., because an improving move has already been found. In this case, the search effort
for further improving moves can be potentially lightened by reducing the search radius ρ. The theoretical
foundation is the following corollary of Theorem 1.

Corollary 1. (Irnich et al. 2006; p. 2411) If a sequence of k numbers (gi)i={1,...,k} has a sum greater than g,
i.e.,

∑k
i=1 gi > g, then there exists a cyclic permutation π of these numbers for which every partial sum

fulfills
∑`
i=1 gπ(i) > /̀k g for all 1 ≤ ` ≤ k.

For a move µ with k partial moves, it means that at the first level the radius can be reduced from ρ1

to ρ1 − γ/k, and at the second level from ρ2 to ρ2 − 2γ/k, etc. For the 2-opt move and its decomposition
discussed above, the gain criterion improving condition (1) becomes

ci,si − cij > γ/2 or cj,sj − csi,sj > γ/2 (2)

with the corresponding radius conditions

cij < ρ with ρ = ci,si − γ/2 (3a)
and csi,sj < ρ with ρ = cj,sj − γ/2. (3b)

Comparing (1) and (2) for the deleted arc (i, si), the initial radius, i.e., the one used in fixed-radius
search, is ρ0 = ci,si (the superscript 0 corresponds to γ = 0). The radius that results when the lower bound
is exact, i.e., γ = g∗, is ρ∗ = ci,si − g∗/2. Depending on the previously found improving moves, the radius ρ

9

actually used in the inner loop of Algorithm 2 is between ρ∗ and ρ0. Therefore, it is always at least as sharp
as fixed-radius search. In the following, we call a radius search that is based on the sharpened gain criterion
a dynamic-radius search.

ρ0

ρ∗

g∗/2

d

1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

16

17

18

19

20

21

2223

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

Figure 5: Dynamic-radius search for 2-opt where the first deleted arc is (4, 15), neighbors in N(4) and
N(15) inspected with respect to threshold ρ0 are highlighted. The selected move is an intra-depot (because
d4 = d12 = d) and inter-tour move. It deletes (12, 44) and inserts (4, 12) and (15, 44). At any time of the
search, we have ρ∗ ≤ ρ ≤ ρ0 anywhere within the double arrow of width g∗/2. Some specific numbers are
ci,si = c4,15 = 18.87, g∗ = 17.28, and ρ∗ = 18.87 − 17.28/2 = 10.23 such that customer 40 is never tested
whereas customer 13 is not if we already have identified a large enough gain.

Figure 5 depicts part of an MDVRP solution in which we find an improving intra-depot 2-opt inter-tour
move as seen in Figure 1b. It deletes arcs (4, 15) and (12, 44), inserts arcs (4, 12) and (15, 44), and inverts
the segments (15, 37, 17, d) and (d, 12). Let us assume the deleted arc being tested is (i, si) = (4, 15). The
concentric circles indicate which of the neighbors N(4) and N(15) must be respectively evaluated for the
radii ρ0 and ρ∗. The neighbors are color shaded in one or even two colors if they appear in the area of
the circles with radius ρ0. As 12 ∈ N(4) and 44 ∈ N(15) within radius ρ0, the depicted 2-opt move is
found twice in fixed-radius search, once with the inserted arc (4, 12) as a neighbor of i = 4 and once more
with the inserted arc (15, 44) as a neighbor of si = 15. In fact, we evaluate it another two times when
looking at the deleted arc (12, 44) and its cost c12,44 used for the threshold. It is however likely that the two
different deleted arcs have quite different costs which already gives a first explanation for a smaller observed
redundancy than the aforementioned factor of four.

Dynamic-radius search can reduce the observed redundancy even further although it is not as direct.
Imagine this particular move yields the best gain g∗, the threshold ρ being used at any given time in the
exploration is then anywhere in the interval [ρ∗, ρ0] depending on the value γ. It is tempting to look at the
smaller overlapping area of the circles but this is mostly irrelevant since moves evaluated with vertices in this
area are not comparable, e.g., inserted arcs (4, 17) and (15, 17) do not lead to the same move. The reduced
observed redundancy simply comes from the smaller radius which potentially contains much less vertices to
evaluate. In the most optimistic scenario, testing another deleted arc (i, si) with a larger cost ci,si ≥ γ/2,
the threshold ρ becomes zero or even negative, thus implying that no neighbors must be analyzed at all.
The consequence of this is that the reduced observed redundancy is very tangible although unpredictable as
it depends on the loop construction and the observed gain.

10

We stress again the conservative nature of criterion (2) and take a look at when redundancy is maximal.
For fixed-radius search, it occurs when ci,si = cj,sj . Many more conditions need to align for maximal
redundancy in dynamic-radius search, that is, it occurs when g∗ = ε is rather small and the arc cost of
all four arcs is almost identical, e.g., ci,si = cj,sj = cij = csi,sj + ε which leads to ρ0 = ρ∗ + ε/2. These
observations are independent of how one decomposes the move into partial moves or how one implements
the inner loops.

Finally, we close with a geometric interpretation of dynamic-radius search and an open question for future
research. Every unit reduction of the radius ρ reduces the area of the admissible neighbors quadratically by
definition of a circle. Any radius ρ > c15,44 would suffice for 44 ∈ N(15) to qualify for the gain criterion.
Note that such a radius is smaller than ρ∗ except when the deleted edges are of the same length. The
question is therefore: Is there a way to predict the smallest but sufficiently large radius ensuring that a move
with maximum gain is identified?

3.3. Granular Search
We briefly review granular search to clarify its relationship to radius search. Granular search is a neigh-

borhood search and exploration technique that has been introduced via granular tabu search implementations
for VRPs (Toth and Vigo 2003; Escobar et al. 2014; Schneider et al. 2017). The idea is an extension of
bounded candidate-lists, as explained in Section 3.2.1, where arcs to be inserted are still ordered but now
stored in a single global list, instead of one candidate list per vertex. This global list, denoted A, is called
the generator-arc list. Granular search explores the given neighborhood by considering only those moves
where one specific inserted arc, the generator arc, is in A. In case of the 2-opt neighborhood, the generator
arc can be defined as the arc (i, j). Since (i, j) completely determines the 2-opt move, neighborhood explo-
ration boils down to loop over (i, j) ∈ A and to implicitly construct and evaluate the feasibility and gain of
the associated neighbor solution (the latter is possible in constant time for the MDVRP). Note that for a
2-opt move and the second inserted arc (si, sj) it is not required that (si, sj) ∈ A holds. In the same vein,
redundancy occurs if both arcs (i, j) and (si, sj) are present in A.

Granular search can only guarantee that an improving move is found whenever one exists if the generator-
arc list comprises all feasible arcs. Typically, A is a heavily truncated list so that granular search only explores
heuristically. Moreover, in the tabu search context, for which granular search was invented, one is interested
in a best but not necessarily improving move. A generator-arc list is well-suited for this task.

The granularity aspect of granular search comes from a partitioning of the generator-arc list, that is,
A =

⋃U
u=1Au, in which the sorted order of the arcs in A is also maintained. If no improving move is found

with Au, the exploration is pursued in Au+1 for all 1 ≤ u ≤ U − 1, see Algorithm 3.
The speed of granular search also results from the increased flexibility of maintaining the generator

arcs in any order. Indeed, the above mentioned implementations for VRPs exploit that a better selection of
generator arcs (i.e., the choice of A) and ordering of generator arcs (i.e., their assignment to A1,A2, . . . ,AU)
often results when pseudo-costs are used instead of the given routing costs cij .

3.4. Comparison and Remarks
The synopsis of lexicographic, radius, and granular search provided by Figure 4 as well as the above

discussion highlights the different ideas behind the neighborhood exploration techniques: Lexicographic
search primarily prunes the search tree on the basis of local feasibility and is therefore well suited for
strongly constrained VRPs. In contrast, radius search primarily prunes on the basis of the gain criterion
and can be expected to be less effective for strongly constrained VRPs, because here many infeasible moves
look promising from a gain’s perspective. Later results will however show that for loosely constrained VRPs
like the MDVRP, radius search typically outperforms lexicographic search. Granular search prunes on the
basis of a heuristic pre-selection of generator arcs, which can either be based on feasibility or cost criteria
or a mix of both.

In all cases, we have the freedom to decide which comes first: the feasibility test or the gain computation.
One should decide this by comparing the computational effort and effectiveness of both tasks.

We have presented lexicographic and radius search as best improvement exploration strategies. Even
though both can be prematurely stopped when any improving and feasible solution has been found (this is

11

first improvement), the idea of dynamic-radius search is to not stop but to explicitly exploit previously found
improving solutions that lead to reduced search radii. By design, granular search follows a best improvement
strategy per generator-arc list subset Au. First improvement would only really make sense if U = 1 in which
case the initial sorting of the arcs is even more crucial.

4. Dynamic-Radius Search for Inter-Depot 2-Opt and 2-Opt* Moves

Using dynamic-radius search in the multi-depot environment, one must realize that the radii ρ0 and ρ∗,
as defined in (3) for the intra-depot 2-opt cases in Figures 1a and 1b, do not account for the additional
source/sink depot swap cost that may occur. Using these radii, we are no longer guaranteed to find the
remaining improving moves, let alone provide the best gain available, unless we find a way to correctly
consider this otherwise neglected cost prior to the radius breakpoint, that is, before testing neighbor vertices
in an inner loop. For this purpose, we introduce a correction term τ on the standard threshold ρ which
bounds from above the potential gain any source or sink depot swap can produce with respect to the current
solution R and the explored neighborhood.

Let us further clarify the need for a correction term by presenting some facts regarding the inter-depot
2-opt* and 2-opt moves as broken down in the cases of Figures 2a–2f and 3a–3f. Note that we shorthand
the latter expression to ‘case xy’ and even only use the index ‘y’ in mathematical formulas of a given
neighborhood.

Table 1 summarizes all cases by listing their corresponding gains. The headers (standard, source, sink,
and exception) reflect the left-/right-side structure and refer, respectively, to move-defining, exchanged arcs
of the standard cases 1c, 2a and 2b of 2-opt* and standard cases 1b, 3a and 3b of 2-opt, the arcs exchanged
at the source (resp. roles preserved) and the sink (resp. roles interchanged) to repair the otherwise infeasible
depot assignment, and the added arc of the exception cases that differs from the standard cases. It is obvious
that the gain computations differ significantly from one another and especially compared to the standard
ones.

Table 1: Gains of the 2-opt* and 2-opt moves.

2-opt* Fig. Gain g from edges

Move type standard source sink exception

Intra-depot 1c ci,si−cj,si+cj,sj−ci,sj
Inter-depot 2a ci,si−cj,si+cj,sj−ci,sj +cdi,fi−cdj ,fi+cdj ,fj−cdi,fj

2b ci,si−cj,si+cj,sj−ci,sj +cli,di−cli,dj +clj ,dj−clj ,di
2c ci,si−cj,si+cj,sj +cdj ,fj−cdi,fj −cdj ,sj
2d ci,si−cj,si+cj,sj +cli,di−cli,dj −ci,di
2e ci,si +cj,sj−ci,sj +cdi,fi−cdj ,fi −cdi,si
2f ci,si +cj,sj−ci,sj +clj ,dj−clj ,di −cj,dj

(a) The seven different cases of 2-opt*.

2-opt Fig. Gain g from edges

Move type standard roles preserved roles interchanged exception

Intra-tour 1a ci,si−cij+cj,sj−csi,sj
Intra-depot 1b ci,si−cij+cj,sj−csi,sj
Inter-depot 3a ci,si−cij+cj,sj−csi,sj +cli,di−cdj ,li+cdj ,fj−cfj ,di

3b ci,si−cij+cj,sj−csi,sj +cdi,fi−cdj ,fi+clj ,dj−clj ,di
3c ci,si−cij+cj,sj +cdj ,fj−cfj ,di −cdj ,sj
3d ci,si +cj,sj−csi,sj +clj ,dj−clj ,di −cdj ,j
3e ci,si +cj,sj−csi,sj +cli,di−cdj ,li −ci,di
3f ci,si−cij+cj,sj +cdi,fi−cdj ,fi −csi,di

(b) The eight different cases of 2-opt.

12

In Table 2, the various cases that may arise are conditioned based on the known deleted arc (i, si) given
by the outer loop and whose cost is central to the threshold computation. For each neighborhood, we have
an explicit and an implicit column. This distinction is explained and utilized in the upcoming multi-depot
threshold analysis. In order to correctly apply dynamic-radius search, we must match the multi-depot
threshold with inner loops that are based on neighbor lists N(i) and N(si).

Table 2: Arising cases conditioned on the known deleted arc (i, si).

2-opt* 2-opt
Figure 2 Figure 3

Conditions on i and si Explicit Implicit Explicit Implicit

i 6= di and si 6= di a, b, d e a, b, e f
i = di and si 6= di b, c, d a, e d
i 6= di and si = di a e, f b, c f
i = di and si = di c f c d

Finally, the symbol ρ is reserved for the threshold given by the standard cases displayed in Figure 1a–1c.
The latter appears as a common term (and therefore the lower bound) in all our thresholds. Each case
‘y’ indeed gives rise to a local threshold ρ + τy where τy is a correction term. We make the multi-depot
threshold clear by expressing it as ρMD = ρ+ τ , where τ is a case-dependent expression contributing to the
correction term. We now distinguish between the 2-opt* and the 2-opt neighborhoods

4.1. 2-Opt* Moves
Recall that Figures 1c and 2a–2f display the seven cases to handle for the 2-opt* neighborhood. Following

the same line of arguments as explained in Section 3.2.3 for 2-opt, the radius for the standard intra-depot
2-opt* case 1c is given by

cj,si < ρ with ρ = ci,si − γ/2 (4a)
and ci,sj < ρ with ρ = cj,sj − γ/2. (4b)

Since dynamic-radius search exploits that the 2-opt* is completely symmetric with respect to i and j,
there is a single inner loop say on j ∈ N(si) for the known deleted arc (i, si). Observe that in cases 2e and 2f,
arc (j, si) is absent from the final move. This implies that its cost is irrelevant and cannot be subjected to
a threshold. We sidestep this by observing that case 2c is symmetric in the affected routes to case 2e and
likewise 2d to 2f. The idea is then that we must define a threshold in such a way that if an improving move
with g > γ exists in cases 2e or 2f, it is found by their symmetric counterpart. Our case-by-case analysis
works as follows:

In the standard source case 2a, the arcs affected by the 2-opt* move are distinct from those needed to
fix the depots. A new best gain is established by such a move if g = [ci,si − cj,si + cdi,fi − cdj ,fi] + [cj,sj −
ci,sj +cdj ,fj −cdi,fj] > γ. As before, we break down the gain into two expressions according to the bracketed
parts. This implies that cj,si < ci,si + cdi,fi − cdj ,fi − γ/2. The point here is that the term cdj ,fi (depending
on j) is unknown at the moment when (i, si) is deleted and the threshold ρ must be computed. We can
however replace cdj ,fi by a lower bound over any depot reconnection yielding a radius large enough:

cj,si < ρ+ τa with τa = cdi,fi −min
d∈D

cd,fi . (5a)

We find the interpretation of this correction term quite elegant because it goes in line with intuitive ex-
pectations of the multi-depot environment: If customer fi is already attached to the nearest depot, then
the right side simplifies to the original ρ value given by (4a). Otherwise, the radius takes into account the
potential for swapping source depots as the cost difference between the current depot assignment and one
of a nearest depot.

13

In the standard sink case 2b, the gain can be decomposed into g = [ci,si − cj,si + cli,di − cli,dj] + [cj,sj −
ci,sj + clj ,dj − clj ,di] so that the resulting radius is given by

cj,si < ρ+ τb with τb = cli,di −min
d∈D

cli,d , (5b)

where we note the similarity with the standard source case 2a that comes with exchanged roles of source
and sink depot swap in the gain formula and the nearest-depot interpretation

In the exception case 2c, the gain is computed as g = ci,si − cj,si + [cdj ,fj − cdi,fj] + [cj,sj − cdj ,sj].
Observe that arc (i, sj) is omitted from the final move (see Table 1a), since it would otherwise be inserted
and removed upon swapping source depots. It turns out that we cannot reasonably decompose the gain’s
components so that the gain criterion can be applied. Moreover, remember that we must ensure a move
from case 2e can be found anyway. The following threshold bounds from above the gain seen in case 2c thus
fulfilling the latter requirement:

cj,si < ρ+ τc with τc = max
r∈R

[cdr,fr − cdi,fr + max
j∈N(r)

(cj,sj − cdr,sj)]− γ/2, (5c)

where N(r) is the set of customers in route r. Moreover, we have a subtraction of γ/2. As we did not
decompose the gain (into two independent parts) to test condition g > γ, the whole γ can be subtracted
from the computed radius. With −γ = −2 · γ/2 and the first half being already present in ρ (4), the validity
of (5c) becomes clear. Fortunately, since the terms are consciously organized, intuition still answers the call.
The first bracket describes some route r for which the first customer fj would be closer to the source depot di
than to the currently assigned source depot dj , whereas the second bracket describes some customer j for
which short-cutting from dj to sj is favorable.

The exception case 2d slightly differs from the former case 2c because of the different arc costs that
are unknown in j and known in i. The gain g = ci,si − cj,si + [cli,di − ci,di] + [clj ,dj − cli,dj] still offers no
acceptable decomposition, and we also want to cover case 2f. The resulting radius condition becomes

cj,si < ρ+ τd with τd = [cli,di − ci,di] + max
r∈R

(clr,dr − cli,dr)− γ/2. (5d)

The difference compared to (5c) is that now there is no inner max-term over j ∈ N(r).
In summary, the case-by-case analysis has led to four different case-dependent correction terms given by

the equations (5a)–(5d). We still face the complication that the threshold must be computed when deleting
arc (i, si) and before knowing which correction term to apply. However, we do know whether i = di or i 6= di
as well as whether si = di or si 6= di. Depending on these four possibilities, we can filter out which of the
seven cases may happen (using Table 2). Accordingly, we define the final radius, tailored to the first deleted
arc (i, si), as the maximum of the corresponding radii.

A careful examination of the conditioned cases in Table 2 allows the nodes i and si to be treated
independently in the final formula. For example, the term τc occurs only when i = di and the term τa
only when i 6= di which is indeed irrespective of si. Judiciously collecting all terms results in an elegant
convoluted threshold expressed with respect to the various correction terms (5a)–(5d):

ρMD = ρ+ max

[{
τc if i = di

τa if i 6= di
,

{
0 if si = di

max{ τb , τd } if si 6= di

]
. (6)

In summary, this radius definition, which depends on the type of the first deleted arc (i, si), covers all
cases of 2-opt*. The different correction terms added to ρ were precisely highlighted. The test csi,j < ρMD

is clearly a relaxed radius condition compared to the standard case, but it allows us to exactly explore the
2-opt* neighborhood including inter-depot moves.

4.2. 2-Opt Moves
Deriving the correction term for 2-opt is slightly more intricate yet we find very similar expressions. Let

us again be supported by the broken down cases as depicted in Figure 3 together with their respective gains
14

in Table 1b. Exception cases 3c and 3f can indeed be merged into a one-sided test because the arc costs are
symmetric (same for 3e and 3d). The following correction terms cover the relevant cases 3a, 3b, 3c, and 3e:

τa = cli,di −min
d∈D

cd,li (7a)

τb = cdi,fi −min
d∈D

cd,fi (7b)

τc = max
r∈R

[(cdr,fr − cfr,di) + max
j∈N(r)

(cj,sj − cdr,sj)]− γ/2 (7c)

τe = cli,di − ci,di + max
r∈R

(cdr,fr − cdr,li)− γ/2 . (7e)

Using Table 2, the final radius is obtained by collecting the terms with respect to the deleted arc (i, si)
and independently treating the vertices i and si similarly to 2-opt* as

ρMD = ρ+ max

[{
0 if i = di

τb if i 6= di
,

{
τc if si = di

max{ τa , τe } if si 6= di

]
. (8)

5. Iterated Local Search

In this section, we describe the algorithmic details of our metaheuristic. We have designed it with
simplicity in mind so that local search is the fundamental building block. A good pick in this respect is
iterated local search (ILS, Lourenço et al. 2002) as it combines local search with a perturbation mechanism.
Local optima are perturbed into new solutions so that local search can be applied repeatedly.

In our ILS, capacity constraints and duration constraints (if any) are handled as hard constraints such
that feasibility of all routes is maintained starting from the construction heuristic to the perturbation and
throughout the local search. The vehicle fleet-size limit however is artificially construed as a soft constraint
by tolerating up to δm, δ ≥ 1, vehicles per depot in all components of the metaheuristic, i.e., construction,
local search, and perturbation. We therefore speak of δ-fleet-size feasibility, where a solution R fulfills the
instance requirements if δ = 1. In addition, we introduce an intermediate fleet-reduction operation between
local search and perturbation in an effort to recover fleet-size feasibility. This operation is allowed to fail in
which case we do not obtain a local optimum.

We then perform a perturbation operation to induce relatively significant routing changes in the current
solution. The main complication is to maintain δ-fleet-size feasibility which we handle with a fail-safe
savings heuristic. This explains why we had to design the ILS with a somewhat more involved perturbation
mechanism.

We describe the construction heuristic in Section 5.1, the local search in Section 5.2, the perturbation
and fleet-reduction operations in Section 5.3, and we provide an overview and pseudo-code of the entire ILS
in Section 5.4.

5.1. Construction Heuristic
Our construction procedure is based on the savings heuristic of Clarke and Wright (1964). The core

idea remains to process an arc list sorted decreasingly by their potential saving, but the multi-depot aspect
and the additional duration constraints are accounted for as follows. First, we draw uniformly distributed
parameters ζ ∈ [0, 2] and λ ∈ [ζ − 0.25, ζ + 1.75]. Then, we compute the saving of every arc (i, j) with
respect to each depot d ∈ D as σdij = −λcij + cdi+ cjd+ ζ(cdi− cjd), where λ and ζ influence the comparison
between the cost of arc (i, j) and of connecting i and j to d. We reject those combinations where (d, i, j, d)
is an infeasible route. To further randomize the procedure, for each arc (i, j), we take from these |D| depot-
specific savings values (σdij)d∈D an arbitrary one that is non-negative, denoted σij . Next, we sort these
savings (σij)(i,j) decreasingly.

At the start, all customers i ∈ N form separate segments (i). After computing and sorting the savings
values (σij)(i,j), the main loop considers the associated arcs (i, j) one by one. If the vertices i and j are the
last/first of their segments and the concatenation of their segments (v i) and (j w) gives a feasible

15

route (d, v i, j w, d) for some depot d ∈ D, we join the segments together. At the end, when no more
segments can be joined, each segment is finally assigned to the depot d that leads to the cheapest feasible
route. Note that this type of depot assignment may lead to a solution R that is infeasible regarding the
fleet-size constraints. We accept slightly infeasible solutions R if |R ∩ Rd| ≤ δm, where δ is the parameter
described in the introduction of Section 5.

The above procedure is repeated with δ = 1.25 and new random parameters ζ and λ until the constructed
solution R is δ-fleet feasible.

5.2. Local Search
A reasonable local search-based ILS must use additional neighborhoods besides 2-opt and 2-opt*. For the

purpose of this study, we complement them with six other neighborhoods relocation, swap, string exchange
(ordered and inverted), and Or-opt (ordered and inverted) as commonly defined (see, e.g., Aarts and Lenstra
1997; Funke et al. 2005). Figures 6 and 7 describe the general composition of Or-opt and string-exchange
moves in ordered and inverted variants. Both neighborhoods restrict the length of their relocated chains
to a length parameter L. Note that a relocation move is an Or-opt move with L = 1, and likewise a swap
move is a string exchange with L = 1. We nevertheless implemented independent relocation- and swap-
neighborhood exploration algorithms to benefit from the specialization, because for relocation and swap the
distinction between ordered and inverted chains is irrelevant. In the following, we use L = 5 for Or-opt and
string exchange unless stated otherwise.

d1 i si j sj

k sk

d1

d2 d2

ci,si cj,sj

ck,sk

ck,si
cj,sk

ci,sj

(a) Ordered chain.

d1 i si j sj

k sk

d1

d2 d2

ci,si cj,sj

ck,sk

ckj csi,sk

ci,sj

(b) Inverted chain.

Figure 6: Inter-depot Or-opt, |si j| ≤ L.

d1 i si j sj d1

d2 k sk l sl d2

ci,si cj,sj

ck,sk cl,sl

ci,sk cl,sj
ck,si cj,sl

(a) Ordered chains.

d1 i si j sj d1

d2 k sk l sl d2

ci,si cj,sj

ck,sk cl,sl

cil
csi,slckj
csk,sj

(b) Inverted chains.

Figure 7: Inter-depot string exchange, |si j| ≤ L and |sk l| ≤ L.

Relocation, swap, string exchange, and Or-opt are naturally compliant with the multi-depot environment
because all these inter-depot moves result in routes that have matching source and sink depots.

Our local search is kept as simple as possible: All eight neighborhoods (we consider inverted and ordered
Or-opt and string exchange as different neighborhoods) are explored in a cyclic fashion. The exploration is
done with a best-improvement strategy. Whenever an improving move is returned from the neighborhood
exploration, it is performed and we move to the next neighborhood. Local search terminates when all
neighborhoods are explored without success, so that the solution R returned is always a local optimum with
regards to all eight neighborhoods.

Note finally that δ-fleet feasibility can easily be maintained in the local search if the starting solution
fulfills it. We must only use a feasible number of copies of the depots: Exactly 2bδmc copies are needed per
depot d ∈ D (two for each route, see Section 2).

16

Algorithm 4: Iterated Local Search (ILS)
// Initialization

1 Savings(R) // Section 5.1
2 count← 0

// Main Loop
3 for nILS iterations do

// Local Search Phase
4 LocalSearch(R, δ = 1.25) // Section 5.2
5 if not fleet-size feasible then
6 Fleet-reduction(R) // Section 5.3
7 if fleet-size feasible then
8 LocalSearch(R, δ = 1.0) // Section 5.2

// Perturbation
9 if not fleet-size feasible then

10 count← count+ 1
11 if random() < 0.7count then
12 Perturbation(R) // Section 5.3
13 else
14 Savings(R) // Section 5.1
15 else
16 count← 0
17 Perturbation(R) // Section 5.3

5.3. Perturbation and Fleet-Reduction
The perturbation consists of a multi-phase re-clustering on a δ-fleet-size feasible solution R. We first

permute the routes randomly in the giant tour and then apply a circular shift on a random position. From
this new customer sequence, routes are filled in order while satisfying resource consumption. This process
is repeated 2 to 5 times (uniformly random). If the re-clustering fails to produce a suitable customer
assignment, i.e., a δ-fleet feasible solution, a new solution R is constructed with the construction heuristic.

The purpose of the fleet-reduction operation is to transform a given solution R that is δ-fleet feasible
into one that is 1-fleet-size feasible. As this is an NP-hard and sometimes practically difficult task, the
fleet-reduction operation may terminate with a solution that is only partly improved regarding fleet-size
feasibility. Note that in any case such an improvement likely comes at the cost of worsening the objective
value.

The fleet-reduction operation tries to patch up the given solution by moving chains of customers from
overused to underused depots and their routes. We reuse the exploration of 2-opt* and Or-opt neighborhoods
to find a chain inside a route belonging to an overused depot that can be moved to another depot at minimal
cost. 2-opt* and Or-opt moves are repeated until a fleet-size feasible solution is constructed or the search
for such a feasible 2-opt* or Or-opt move fails. This modified solution is then perturbed irrespective of its
feasibility status, but we do save it as a local optimum if the fleet-reduction operation is successful.

5.4. Iterated Local Search
The general design is an ILS with a limit of nILS local search iterations as summarized by the pseudo-

code in Algorithm 4. The current solution is denoted by R and it is initialized by the result of the savings
heuristic in Step 1. The counter count (initialized at zero in Step 2) keeps track of the number of consecutive
iterations for which the fleet-reduction operation fails to produce a fleet-size feasible solution.

We perform up to two passes in each local descent (Steps 4 and 8). In the first pass (Step 4), the limit on
the number of vehicles is relaxed. When a local optimum is reached, if said limit is satisfied, the algorithm
moves on to the perturbation operation. Otherwise, the fleet-reduction operation tries to make the solution
fleet-size feasible (Step 6) and, if so, the second local-search pass is performed, for which the strict fleet-size
limit is imposed (Step 8).

17

The perturbation mechanism (Steps 9 to 17) uses the savings heuristic as a fallback whenever the actual
perturbation procedure described in Section 5.3 fails to produce a δ-fleet feasible solution.

6. Computational Results

The implementation of the ILS algorithm is written in C++ and compiled in 64-bit release mode under
Microsoft Visual Studio 2015. The experiments are conducted on a Microsoft Windows 10 standard
personal computer equipped with an Intel i7-6700 CPU clocked at 3.40GHz and 16GB of RAM. A single
thread is allocated to each run.

Section 6.1 describes the benchmark instances used in this study. A comparison with the previous
dynamic-radius search implementation follows in Section 6.2. We then take a look in Section 6.3 at an alter-
native way to recover inter-depot 2-opt and 2-opt* moves that foregoes both the challenging implementation
and the correction term. The impact of the correction term is analyzed in Section 6.4 by evaluating its
contribution under various usage scenarios.

6.1. Instances
We start our analysis of dynamic-radius neighborhood exploration techniques by reproducing a compar-

ative assessment with lexicographic search using
• 560 CVRP instances [10 (seed) × 4 (load factor) × 14 (size)] from Irnich et al. (2006), where the load

factor f is the quotient of the capacity Q and the average demand qi of the customers i ∈ N . As a
result, we see on average approximately f customers per route in good solutions.

We then look at how dynamic-radius search behaves with respect to multi-depots and the presence or not
of the correction terms using the proposed ILS on commonly used MDVRP instances from the literature:

• 33 MDVRP instances [p01–pr10] from Cordeau et al. (1997);
The CVRP instances from the previous work (Irnich et al. 2006) are available at https://logistik.bwl.
uni-mainz.de/research/benchmarks/.

6.2. Improved Implementation
Dynamic-radius search has been re-implemented with a greater focus on low-level efficiency but we also

gave due attention to lexicographic search. The reader may compare the previous results (Irnich et al.
2006; Figures 7 and 9) with Figures 8 and 9 referring to the same 560 CVRP instances. These figures
compare lexicographic and radius search by analyzing two indicators: the acceleration factor describing the
average ratio of computing times needed with lexicographic compared to dynamic-radius search (ratios are
dimensionless) and average neighborhood-exploration times (in milliseconds [ms]). To understand what is
depicted, one must know that the effectiveness of (dynamic-)radius search for the CVRP strongly depends
on the load factor f . Therefore, the results presented in Figures 8 and 9 are exactly grouped by both
number |N | of customers and load factor f .

Figure 8 shows the average acceleration factors. Comparing relative performance to lexicographic search
with the 2-opt neighborhood (old factor 35 versus new factor 20) and the string-exchange neighborhood (900
versus 600) for the largest instances with |N | = 2,500 customers, it appears that the benefit of dynamic-
radius search has slightly decreased. This is due to significant improvements in the lexicographic search
implementation but also the fact that the increased maximum string length from L = 3 to 5 favors the
lexicographic paradigm. Contrarily to the previous computational study in (Irnich et al. 2006), the trend lines
also do not show any significant negative slope when increasing the number of customers. This is particularly
striking on the string-exchange neighborhood and can be explained by the fact that we have incorporated
feasibility pruning inside the string examinations of dynamic-radius search. Some neighborhoods such as
relocation now also exploit the threshold whenever a new best gain is identified rather than only in the inner
loop head.

Figure 9 depicts the average computation time for a single neighborhood exploration. We achieve a
reduction in absolute computation time by at least a factor of 10 for every neighborhood including those

18

https://logistik.bwl.uni-mainz.de/research/benchmarks/
https://logistik.bwl.uni-mainz.de/research/benchmarks/

500 1,000 1,500 2,000 2,500

10

20

30

40

ac
ce

le
ra

ti
on

fa
ct

or

2-opt*

500 1,000 1,500 2,000 2,500

5

10

15

20

2-opt

500 1,000 1,500 2,000 2,500
0

20

40

60

ac
ce

le
ra

ti
on

fa
ct

or

relocation

500 1,000 1,500 2,000 2,500

50

100

swap

500 1,000 1,500 2,000 2,500

200

400

600

ac
ce

le
ra

ti
on

fa
ct

or

string exchange (L = 5)

500 1,000 1,500 2,000 2,500

200

400

inverted string exchange (L = 5)

500 1,000 1,500 2,000 2,500
0

1,000

2,000

ac
ce

le
ra

ti
on

fa
ct

or

string exchange (L = ∞)

500 1,000 1,500 2,000 2,500
0

1,000

2,000

3,000

inverted string exchange (L = ∞)

500 1,000 1,500 2,000 2,500

50

100

ac
ce

le
ra

ti
on

fa
ct

or

Or-opt (L = 5)

500 1,000 1,500 2,000 2,500

50

100

inverted Or-opt (L = 5)

500 1,000 1,500 2,000 2,500
0

20

40

60

80

size

ac
ce

le
ra

ti
on

fa
ct

or

Or-opt (L = ∞)

500 1,000 1,500 2,000 2,500

20

40

60

80

size

inverted Or-opt (L = ∞)

f = 25 50 75 100

Figure 8: [CVRP, Irnich et al. (2006)] Average acceleration factor of dynamic-radius search over lexicographic
search for various neighborhood operators and instances ranging from 300 to 2,500 in customer size.

19

500 1,000 1,500 2,000 2,500

0

0.5

1

se
ar

ch
ti

m
e

(m
s)

2-opt*

500 1,000 1,500 2,000 2,500

0

1

2

2-opt

500 1,000 1,500 2,000 2,500

0

0.5

1

1.5

2

se
ar

ch
ti

m
e

(m
s)

relocation

500 1,000 1,500 2,000 2,500

0

2

4

swap

500 1,000 1,500 2,000 2,500

0

2

4

6

se
ar

ch
ti

m
e

(m
s)

string exchange (L = 5)

500 1,000 1,500 2,000 2,500

0

2

4

6

8

inverted string exchange (L = 5)

500 1,000 1,500 2,000 2,500

0

5

se
ar

ch
ti

m
e

(m
s)

string exchange (L = ∞)

500 1,000 1,500 2,000 2,500

0

5

inverted string exchange (L = ∞)

500 1,000 1,500 2,000 2,500

0

2

4

6

se
ar

ch
ti

m
e

(m
s)

Or-opt (L = 5)

500 1,000 1,500 2,000 2,500

0

2

4

inverted Or-opt (L = 5)

500 1,000 1,500 2,000 2,500

0

5

10

size

se
ar

ch
ti

m
e

(m
s)

Or-opt (L = ∞)

500 1,000 1,500 2,000 2,500
0

2

4

6

8

size

inverted Or-opt (L = ∞)

f = 25 50 75 100

Figure 9: [CVRP, Irnich et al. (2006)] Average neighborhood-exploration time (in milliseconds) of dynamic-
radius search for various neighborhood operators and instances ranging from 300 to 2,500 in customer size.

20

with larger maximal string lengths L. We believe that technological progress since 2006 cannot single-
handedly explain this improvement as evidenced by the average search times of the swap neighborhood (70
milliseconds [ms] versus 4 ms) and string-exchange neighborhood (350 ms versus 9 ms) for instances with
|N | = 2,500 customers. We point here to the aforementioned transition to an explicit double inner-loop
design which allows finer treatment of depot arcs, see Section 3.2.2.

As a last note, we rectify a mistake in the pseudo-code (Irnich et al. 2006; Algorithm 8, Line 6) of
the swap neighborhood. Making abstraction of the different nomenclature, it should read as “LET B1 =
(cv1,t1 + ct1,w1

)/2−G∗/4” instead of 2 in the last denominator.
Figure 10 shows how this behavior remains consistent on the benchmark MDVRP instances of Cordeau

et al. (1997). In particular, we see that despite being considerably smaller than 2,500, the largest instance
(#23 with 360 customers and 9 depots) benefits comparatively more from dynamic-radius search. We also
use the same plot symbol as for load factor f = 25, since it is usually does not surpass 10 in these instances.

0 10 20 30
0

20

40

ac
ce

le
ra

ti
on

fa
ct

or

2-opt*

0 10 20 30
0

10

20

2-opt

0 10 20 30

10

20

30

ac
ce

le
ra

ti
on

fa
ct

or

relocation

0 10 20 30

5

10

15

20

swap

0 10 20 30
0

100

200

ac
ce

le
ra

ti
on

fa
ct

or

string exchange (L = 5)

0 10 20 30
0

100

200

300

inverted string exchange (L = 5)

0 10 20 30
0

20

40

60

size

ac
ce

le
ra

ti
on

fa
ct

or

Or-opt (L = 5)

0 10 20 30
0

20

40

60

size

inverted Or-opt (L = 5)

Figure 10: [MDVRP, Cordeau et al. (1997)] Average acceleration factor of dynamic-radius search over
lexicographic search for various neighborhood operators and instances ranging from 48 to 360 in customer
size.

21

6.3. Inter-Depot Moves via String Exchange and Or-Opt
In this section, we exploit that all inter-depot 2-opt* and 2-opt moves are specific string exchange and

Or-opt moves on the giant tour. For example, 2-opt* moves (Figure 2) can be reproduced by ordered
variants of the string exchange (standard cases 2a, 2b) and Or-opt (exception cases 2c, 2d, 2e, 2f) moves. In
particular, one can see that the string fi i in Figure 2e (2-opt*) can have any length and corresponds to
the string si j in Figure 6a (ordered Or-opt). With respect to 2-opt moves (Figure 3), inverted variants
of the string exchange and Or-opt respectively reproduce standard and exception cases.

Accounting for inter-depot 2-opt* and 2-opt moves in dynamic-radius search implies that two algorithmic
tasks have to be fulfilled: the computation of correction terms and obviously the implementation of the actual
inter-depot moves. The exception correction terms are likely to be larger than their standard counterparts
to account for worst-case scenarios in unknown customer j. Fortunately, exceptions occur only sporadically,
see Table 2. With this in mind, we discuss three alternatives to cope with exhaustively testing for inter-depot
moves.

First, it is possible to duplicate the 2-opt* and 2-opt methods and specialize these copies to account for
specific inter-depot cases. In this fashion, we inevitably face redundant move tests and therefore have an
overall slower method. Moreover, it is a cumbersome implementation for which one must indeed implement
inter-depot cases.

Second, specializing the string exchange and Or-opt neighborhoods to test for specific depot cases is
even more cumbersome (number and complexity of loop blocks) and slower, since we must also pay for the
overhead of these richer neighborhoods.

Third, we can forbid inter-depot 2-opt and 2-opt* moves and herewith get rid of all the correction terms
as well as the repair operations. Instead, we allow arbitrary string lengths, i.e., L =∞ in the string exchange
and Or-opt neighborhood exploration.

We have implemented this third alternative and tested how well string exchange and Or-opt scale with this
length increase. Obviously, the time of neighborhood exploration increases with an unbounded length L =∞
but it is limited by the longest route in the candidate solution. The results of the comparison between the
maximum string length L = ∞ and L = 5 are shown in Figure 11. We ultimately observe a factor of at
least 1.5 which reaches 4 on instances with load factor f = 100.

500 1,000 1,500 2,000 2,500

2

4

se
ar

ch
ti

m
e

ra
ti

o
(∞

/
5
)

string exchange

500 1,000 1,500 2,000 2,500
1

2

3

4

inverted string exchange

500 1,000 1,500 2,000 2,500

2

3

4

size

se
ar

ch
ti

m
e

ra
ti

o
(∞

/
5
)

Or-opt

500 1,000 1,500 2,000 2,500

2

4

6

size

inverted Or-opt

f = 25 50 75 100

Figure 11: [CVRP, Irnich et al. (2006)] Dynamic-radius search computing time comparison of allowed length
L =∞ over L = 5 in string exchange and Or-opt neighborhood explorations for instances ranging from 300
to 2,500 in customer size.

22

The reader may expect now that we present a direct comparison of the implementations of 2-opt and
2-opt* using the correction terms of Section 4 versus Or-opt and string exchange with unlimited string
length L = ∞. Such a comparison would reveal that already longer neighborhood exploration times of
Or-opt and string exchange (see Figure 9) must be compounded with the observed factors of Figure 11.
However, by allowing arbitrary string lengths, we do not only recover all inter-depot 2-opt* and 2-opt
moves, but we also enrich the local optima space: additional improving Or-opt and string exchange moves
that do not represent 2-opt or 2-opt* moves are found. Hence, such a direct comparison considering relative
computation times is an oversimplification. We therefore omit further analyses.

Finally, we arrive at the conclusion that the simplest possibility is to rely on string exchange and Or-
opt neighborhoods to produce inter-depot 2-opt and 2-opt* moves. However, even if this implementation
shortcut is functional, it does not compete with a full-fledged inter-depot adaptation for the 2-opt* and
2-opt neighborhoods.

6.4. Inter-Depot Moves and the Correction Term
In this section, we investigate the central hypotheses that we already discussed in Section 1 as a main

motivation for our work:
Hyp1: Allowing inter-depot moves helps finding better local optima on average.
Hyp2: Allowing inter-depot moves helps finding better best solutions on average.

To this end, we computationally compare five implementations of ILS that differ in the way in which the 2-
opt and 2-opt* neighborhoods are explored, i.e., the only neighborhoods that implement inter-depot moves.
More precisely, we examine how the following five optionsWith,Without, Last Resort, Random, and Forbid
perform against each other by comparing the respective relative gap measures:
(i): OptionWith (W) uses the correction term (6) and thus guarantees that a move with provably maximum

gain is identified.
(ii): OptionWithout (WO) uses the simple radii of the intra-depot cases, i.e., (3) and (4). It loses the

guarantee but still requires the whole machinery of the depot repair operation.
(iii): Option Last Resort (LR) uses option Without until no improving move is found at which point it

switches to optionWith.
(iv): Option Forbid (F) literally forbids inter-depot moves from happening thus eliminating the need for

the repair implementation.
(v): OptionRandom (R) uniformly picks among those four options at every local search iteration.

It is clear that, for a fixed number nILS of iterations, the five options differ in the computation time
consumed by the respective ILS implementation. Formally, we have two vectors of result data [zIno] and
[tIno], for n ∈ {1, . . . , nILS} and o denotes the option. The vectors respectively give the local optima we
have found at each iteration and the total time it takes since the beginning. Figure 12 illustrates how
we normalize the computation log of the different options on a specific instance I in order to be able to
summarize the benchmark results. On the left, we have iterations on the abscissa and objective values on
the ordinate. Normalizing the ordinate is fairly intuitive since we simply compute relative gaps with respect
to the instance’s best known solution z̄I :

γI(zIno) = 100(zIno − z̄I)/z̄I .

Normalizing the abscissa in the range [0, 1] allows to compare where we stand for each option with respect
to a computation time budget. Since every option impacts the search time of neighborhood explorations,
the cumulative time difference across the options can become significant. The circle markers on the tail of
the best local optima plots for each option indicate the iteration for which the computation time is the same
as that of the fastest option, say τ I (in Figure 12a, the ILS with option WO is the fastest). One can then
find the iterations with matching points in time for every option. We can see the normalized time axis as
pulling each plot line by its circle marker rightwards thus more or less keeping their shape.

23

Next, we define for each option o the function hIo : [0, 1] 7→ R+ giving the relative gaps in percent of the
average local optima up to a percent time, given by

hIo(t%) =
1

ν

ν∑
n=1

γI(zIno) (9)

where ν = arg maxn∈{1,...,nILS} t
I
no ≤ t % · τ I .

0 1 2 3 4 5

·104

3,960

4,000

4,040

F
W

WO
LR
R

average

iteration

z

(a) Iteration and average objective value.

0 0.2 0.4 0.6 0.8 1

2.5

3

3.5

4

4.5

5
F
W

WO
LR
R

average hI
o

time (%)

z
(%

)

(b) Axes normalized; functions hI
o(t%).

Figure 12: [MDVRP, Cordeau et al. (1997)] Normalizing times and average relative gaps of five options for
a specific MDVRP instance I.

From Figure 12b we see that the function hIo is generally not monotone. The trend of the average
local optima is decreasing, which can be attributed to the design of the metaheuristic, e.g., the acceptance
criterion and the perturbation that reuses solution parts. If randomized initial solutions were used at every
iteration, we would by the law of large numbers expect rather horizontal lines in Figure 12 after sufficiently
many iterations, i.e., larger values of t%.

Overall Average Quality of Local Optima and Hypothesis Hyp1. The normalization allows us to aggregate
the functions hIo over several MDVRP instances for a given option o. Recall that hypothesis Hyp1 refers
to the average quality of local minima. Formally, let I be a finite set of instances I ∈ I. The aggregated
function is

ho(t%) =
1

|I|
∑
I∈I

hIo(t%), (10)

and the upper part of Figure 13 shows the result for the benchmark instances described in Section 6.1. We can
see that overall averages are worst in ILS with optionsForbid andRandom, while with optionsWith,Without,
andLast Resort the overall averages are significantly better. Moreover, differences between the latter three
ILS are minor. The point is that optionsWith,Without, andLast Resort are those that systematically allow

24

inter-depot moves. This confirms our leading hypothesis Hyp1, i.e., the ability to identify better gains by
allowing inter-depot moves pays off with regard to the average quality of local minima.

Overall Average Quality of Best Solutions and Hypothesis Hyp2. To analyze the average quality of best
solutions found, we introduce functions f Io and fo in a similar manner as (9) and (10):

f Io (t%) = min
n∈{1,...,ν}

γ(zIno) and fo(t%) =
1

|I|
∑
I∈I

f Io (t%), (11)

where again ν = arg maxn∈{1,...,nILS} t
I
no ≤ t % ·τ I . The functions f Io and herewith also fo for the incumbent

relative gap are monotonically non-increasing for all options o by definition.
We can see in the lower part of Figure 13 that the best local optima plots are tightly bunched together

fairly early on. For the sake of better visibility, we provide explicit coordinates in Figures 12 and 13, even
though functions hIo and f Io are defined for continuous values (see (9) and (11)). These explicit coordinates
are found by the same time percent within some small tolerance across all options. Furthermore, we discard
all coordinates at t% if f Io (t%) is equal (again within some tolerance) to the value we found in the previous
time percent for all options. This means that the changes in average relative gap values do not appear where
the minimum functions f Io are plateaus. The rest of each function is filled by interpolation. Deriving explicit
coordinates for the aggregated functions follows the same treatment.
There are several results that were completely unexpected for us:
• The difference between the ILS equipped with the five different options is very small. It means that
although the average quality of local optima is improved with 2-opt and 2-opt* moves that allow a depot
swap, average quality does not translate into better overall quality. Hypothesis Hyp2 is not confirmed but
rather proven false.

• The ILS with optionWith (W) is performing worst, while the ILS with optionWithout (WO) is performing
best. Even though options W and WO allow inter-depot 2-opt and 2-opt* moves, it is hard to make an
option recommendation when compared to option Forbidden (F) which is somewhere in between. The
relationship shown with fo is really inconsistent with the relationship shown with ho.
Retrospectively, we can offer the following possible explanation for the unexpected outcome: For the

overall best solution, we only need to find an excellent local optimum one time. It seems to be more
important to inspect more local optima (even if not ensured that they are true optima) than proving that
the solutions cannot be improved with the given neighborhoods. The explanation goes partly in line with
the computation times that we can see in Figure 12a. The ranking by decreasing speed of the options is WO,
F, LR, R, and W, while the ranking by increasing best local optima WO, F and LR, R and W (the latter
pairs are performing equally well). This outcome is very consistent for values of t% between 0.2 and 1.0.

7. Conclusion and Outlook

In this paper, we have revisited radius search, an effective neighborhood exploration technique, which
distinguishes itself from other techniques such as lexicographic search by the way a neighborhood is explored:
A lexicographic search prunes an exploration branch whenever a local infeasibility is observed. Dynamic-
radius search is closer in spirit to the optimization paradigm, since the pruning is based on coefficients of
the objective function, that is, the threshold bound is a function of the best gain found at any given time.

We have extended previous works on radius search to the multi-depot vehicle routing problem including
capacity and tour-duration constraints. The focus of our research is on the two fundamental neighborhoods 2-
opt and 2-opt*, more specifically, their exploration which includes standard intra-depot moves but also inter-
depot moves. Case-dependent correction terms to be added to the otherwise incorrect standard search radii
have been derived. Dynamic-radius search equipped with this modified pruning criterion allows identifying
a provably best-improving move, either intra-depot or inter-depot, with little additional computational
effort. Such inter-depot moves can also be found without the repair machinery but we found that it is
a computationally expensive neighborhood exploration that results from the need to increase the allowed
string length in string exchange and Or-opt neighborhoods.

25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

F
W

WO
LR
R

average ho/minimum fo

time (%)

z
(%

)

Figure 13: [MDVRP, Cordeau et al. (1997)] Average and minimum relative gaps evolution over normalized
axes averaged across benchmark instances for five options.

In comparison to lexicographic search, speedups of factors of 100 and more are observed for 2-opt, 2-opt*,
Or-opt, swap, and string-exchange neighborhoods. Because of the improved implementation, these factors
are sometimes much better than in the original study of Irnich et al. (2006) on the capacitated vehicle
routing problem. Moreover, the adaptation to the multi-depot vehicle routing problem benefits in the same
orders of magnitude.

While there certainly are some fancier metaheuristics out there, we believe our basic iterated-local
search implementation is legitimate enough with respect to behavior one would observe in state-of-the-
art metaheuristics. In particular, we conjectured and have later shown that identifying moves with better
gains lead to better local optima on average. We also conjectured that better average local optima translate
to better incumbent solutions in local search-based metaheuristics like the iterated-local search that we
implemented. This behavior unfortunately does not hold true, proving our second hypothesis as false. Even
if false, this is an important insight that has not been reported so explicitly in the literature.

Clearly, the overarching metastrategy does strongly influence the empirical behavior we illustrate in
our analysis. This means that the mataheuristic’s components like the initial solution construction, the
acceptance criterion, and the depth of local search including the choice of neighborhoods all impact the
results. However, there is absolutely no reason to believe that switching to another search paradigm like
lexicographic would yield any difference. (The metaheuristic would just become slower and therefore loose
competitiveness.)

We can think of the following research paths. First, the way the threshold is constructed is particularly
interesting because it relies on cost upper bounds rather than the actual cost. Tackling alternative vehicle
routing problem variants in which the objective function is not exactly a sum of arc costs such as time-
dependent travel costs then becomes possible. Second, for asymmetric problems, the redundancy in the
exploration does not mean we get to test asymmetric arc costs for free. Indeed, the worst-case factor is
eight rather than four which fortunately is still prone to significant empirical reduction. Finally, we venture
that machine learning may help answer the question we raised at the end of Section 3.2.3 concerning the

26

prediction of the smallest but sufficiently large radius ensuring that a move with maximum gain is identified.

Acknowledgement

This research was funded by the Deutsche Forschungsgemeinschaft (DFG) under grant no. IR 122/7-1 and
IR 122/7-2.

References

Emile H. L. Aarts and Jan Karel Lenstra, editors. Local Search in Combinatorial Optimization. Wiley-Interscience series in
discrete mathematics and optimization. John Wiley & Sons, New York, NY, USA, 1997.

Mandell Bellmore and Saman Hong. Transformation of multisalesmen problem to the standard traveling salesman problem.
Journal of the Association for Computing Machinery, 21:500–504, 1974. doi:10.1145/321832.321847.

Jon Jouis Bentley. Fast algorithms for geometric traveling salesman problems. ORSA Journal on Computing, 4(4):387–411,
1992. doi:10.1287/ijoc.4.4.387.

Geoff Clarke and J. W. Wright. Scheduling of vehicles from a central depot to a number of delivery points. Operations Research,
12(4):568–581, 1964. doi:10.1287/opre.12.4.568.

Jean-François Cordeau, Michel Gendreau, and Gilbert Laporte. A tabu search heuristic for periodic and multi-depot vehicle
routing problems. Networks, 30(2):105–119, 1997. doi:10.1002/(SICI)1097-0037(199709)30:2<105::AID-NET5>3.0.CO;2-G.

G. A. Croes. A method for solving traveling-salesman problems. Operations Research, 6(6):791–812, 1958.
Guy Desaulniers, Oli B. G. Madsen, and Stefan Røpke. The vehicle routing problem with time windows. In Paolo Toth

and Daniele Vigo, editors, Vehicle Routing, chapter 5, pages 119–159. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2014. doi:10.1137/1.9781611973594.ch5.

John Willmer Escobar, Rodrigo Linfati, Paolo Toth, and Maria G. Baldoquin. A hybrid granular tabu search algorithm for
the multi-depot vehicle routing problem. Journal of Heuristics, 20(5):483–509, 2014. doi:10.1007/s10732-014-9247-0.

Birger Funke, Tore Grünert, and Stefan Irnich. A note on single alternating cycle neighborhoods for the TSP. Journal of
Heuristics, 11(2):135–146, 2005. doi:10.1007/s10732-005-0713-6.

Keld Helsgaun. An effective implementation of the Lin-Kernighan traveling salesman heuristic. European Journal of Operational
Research, 126(1):106–130, 2000. doi:10.1016/s0377-2217(99)00284-2.

Holger H. Hoos and Thomas Stützle. Stochastic Local Search: Foundations and Applications. The Morgan Kaufmann Series
in Artifical Intelligence. Elsevier, San Francisco, CA, USA, 2005.

Stefan Irnich. Resource extension functions: properties, inversion, and generalization to segments. OR Spectrum, 30(1):113–148,
2008a. doi:10.1007/s00291-007-0083-6.

Stefan Irnich. A unified modeling and solution framework for vehicle routing and local search-based metaheuristics. INFORMS
Journal on Computing, 20(2):270–287, 2008b. doi:10.1287/ijoc.1070.0239.

Stefan Irnich, Birger Funke, and Tore Grünert. Sequential search and its application to vehicle-routing problems. Computers
& Operations Research, 33(8):2405–2429, 2006. doi:10.1016/j.cor.2005.02.020.

David Stifler Johnson and Lyle A. McGeoch. The traveling salesman problem: A case study in local optimization. In Emile
H. L. Aarts and Jan Karel Lenstra, editors, Local Search in Combinatorial Optimization, chapter 8, pages 215–310. John
Wiley & Sons, 1997.

Shen Lin. Computer solutions of the traveling salesman problem. The Bell System Technical Journal, 44(10):2245–2269, 1965.
doi:10.1002/j.1538-7305.1965.tb04146.x.

Shen Lin and Brian Wilson Kernighan. An effective heuristic algorithm for the traveling-salesman problem. Operations
Research, 21(2):498–516, 1973.

Helena R. Lourenço, Olivier C. Martin, and Thomas Stützle. Iterated local search. In Fred Glover and Gary A. Kochenberger,
editors, Handbook of Metaheuristics, pages 321–353. Kluwer Academic Publishers, Norwell, MA, USA, 2002. doi:10.1007/0-
306-48056-5_11.

Olivier Martin, Steve W. Otto, and Edward William Felten. Large-step Markov chains for the TSP incorporating local search
heuristics. Operations Research Letters, 1(4):219–224, 1992. doi:10.1016/0167-6377(92)90028-2.

Jean-Yves Potvin and Jean-Marc Rousseau. An exchange heuristic for routeing problems with time windows. The Journal of
the Operational Research Society, 46(12):1433–1446, 1995. doi:10.2307/2584063.

Gerhard Reinelt. The Traveling Salesman: Computational Solutions for TSP Applications, volume 840 of Lecture Notes in
Computer Science. Springer, Berlin Heidelberg, Germany, 1994. doi:10.1007/3-540-48661-5.

Martin W. P. Savelsbergh. An efficient implementation of local search algorithms for constrained routing problems. European
Journal of Operational Research, 47(1):75–85, 1990. doi:10.1016/0377-2217(90)90091-O.

Michael Schneider, Fabian Schwahn, and Daniele Vigo. Designing granular solution methods for routing problems with time
windows. European Journal of Operational Research, 263(2):493–509, 2017. doi:10.1016/j.ejor.2017.04.059.

Kenneth Steiglitz and Peter Weiner. Some improved algorithms for computer solution of the traveling salesman problem. In
Proceedings of the Sixth Allerton Conference on Circuit and System Theory, pages 814–821, Urbana, IL, USA, 1968.

Paolo Toth and Daniele Vigo. The granular tabu search and its application to the vehicle-routing problem. INFORMS Journal
on Computing, 15(4):333–346, 2003. doi:10.1287/ijoc.15.4.333.24890.

Thibaut Vidal, Teodor Gabriel Crainic, Michel Gendreau, and Christian Prins. A unified solution framework for multi-attribute
vehicle routing problems. European Journal of Operational Research, 234(3):658–673, 2014. doi:10.1016/j.ejor.2013.09.045.

27

https://doi.org/10.1145/321832.321847
https://doi.org/10.1287/ijoc.4.4.387
https://doi.org/10.1287/opre.12.4.568
https://doi.org/10.1002/(SICI)1097-0037(199709)30:2%3C105::AID-NET5%3E3.0.CO;2-G
https://doi.org/10.1137/1.9781611973594.ch5
https://doi.org/10.1007/s10732-014-9247-0
https://doi.org/10.1007/s10732-005-0713-6
https://doi.org/10.1016/s0377-2217(99)00284-2
https://doi.org/10.1007/s00291-007-0083-6
https://doi.org/10.1287/ijoc.1070.0239
https://doi.org/10.1016/j.cor.2005.02.020
https://doi.org/10.1002/j.1538-7305.1965.tb04146.x
https://doi.org/10.1007/0-306-48056-5_11
https://doi.org/10.1007/0-306-48056-5_11
https://doi.org/10.1016/0167-6377(92)90028-2
https://doi.org/10.2307/2584063
https://doi.org/10.1007/3-540-48661-5
https://doi.org/10.1016/0377-2217(90)90091-O
https://doi.org/10.1016/j.ejor.2017.04.059
https://doi.org/10.1287/ijoc.15.4.333.24890
https://doi.org/10.1016/j.ejor.2013.09.045

Thomas R. Visser and Remy Spliet. Efficient move evaluations for time-dependent vehicle routing problems. Transportation
Science, 54(4):1091–1112, 2020. doi:10.1287/trsc.2019.0938.

28

https://doi.org/10.1287/trsc.2019.0938

	Introduction
	2-Opt and 2-Opt* Moves in Multi-Depot Vehicle Routing Problems
	Inter-Depot 2-Opt*
	Inter-Depot 2-Opt

	Neighborhood Exploration Techniques
	Lexicographic Search
	Radius Search
	Bounded Candidate-Lists based Search
	Fixed-Radius Search
	Dynamic-Radius Search

	Granular Search
	Comparison and Remarks

	Dynamic-Radius Search for Inter-Depot 2-Opt and 2-Opt* Moves
	2-Opt* Moves
	2-Opt Moves

	Iterated Local Search
	Construction Heuristic
	Local Search
	Perturbation and Fleet-Reduction
	Iterated Local Search

	Computational Results
	Instances
	Improved Implementation
	Inter-Depot Moves via String Exchange and Or-Opt
	Inter-Depot Moves and the Correction Term

	Conclusion and Outlook

