
Exact Solution of the Single Picker Routing Problem with Scattered Storage

Katrin Heßlerb, Stefan Irnich∗,a

aChair of Logistics Management, Gutenberg School of Management and Economics, Johannes Gutenberg University Mainz,
Jakob-Welder-Weg 9, D-55128 Mainz, Germany.

bGlobal Data Strategy & Analytics, Schenker AG, Kruppstraße 4, 45128 Essen, Germany.

Abstract

We present a new modeling approach for the single picker routing problem with scattered storage (SPRP-
SS). The SPRP-SS assumes that an article is, in general, stored at more than one pick position. The
task is then the simultaneous selection of pick positions for requested articles and the determination of a
minimum-length picker tour collecting the articles. It is a classical result of Ratliff and Rosenthal that, for
given pick positions, an optimal picker tour is a shortest path in the state space of a dynamic program with
a linear number of states and transitions. We extend the state space of Ratliff and Rosenthal so that every
feasible picker tour is still a path. Furthermore, the additional requirement to make consistent selections and
grouping decisions can be modeled as additional constraints in shortest-path problems. We propose to solve
these problems with a MIP solver. We will explain why this approach is not only convenient and elegant but
also generic: it covers optimal solutions that use heuristic routing policies for the picker tours, can be applied
for different warehouse layouts (we present additional results for a two-block parallel-aisle warehouse), and
can incorporate further extensions. Computational experiments with a direct MIP solver-based approach
for the SPRP-SS show that the new modeling approach outperforms the available exact algorithms.

Key words: warehousing; picker routing; scattered storage

1. Introduction

Warehouse activities include receiving, storing, picking, packing, and shipping operations (Gu et al.,
2007). Excellent surveys introduce warehouse operations planning including storage assignment, warehouse
layout planning, zoning, routing, and batching (van Gils et al., 2018; Boysen et al., 2019). In this work,
we address picking operations in manual (non-automated) warehouses where pickers travel through the
warehouse in order to collect articles from the storage locations (picker-to-parts). De Koster et al. (2007)
highlight that more than 80% of all order-picking systems in Western Europe are low-level picker-to-parts
picking systems. Order picking denotes the process of retrieving inventory items (articles) from their storage
locations in response to specific customer requests (de Koster et al., 2007; Masae et al., 2020b). Manual
order picking is certainly very labor-intensive, and the literature gives different estimations for the effort:
Often cited is the study of Tompkins et al. (2003) saying that typically 60% of all labor activities in the
warehouse result from order picking, and its cost can be estimated to be as much as 55% of the total
warehouse operating expense. Frazelle (2002) estimates that order picking contributes to up to 50% of the
total warehouse operating costs. These figures explain why research on order picking operations is extensive
and of high practical relevance.

In its pure form, the single picker routing problem (SPRP) seeks a minimum-length picker tour given the
warehouse layout and the pick positions from where articles must be collected. The SPRP can be considered

∗Corresponding author.
Email addresses: khessler@uni-mainz.de (Katrin Heßler), irnich@uni-mainz.de (Stefan Irnich)

Technical Report LM-2023-02 March 21, 2023

solved: On the one hand, the seminal work of Ratliff and Rosenthal (1983) assuming a parallel-aisle single-
block warehouse shows that a minimum-length picker tour can be computed with dynamic programming in
linear time (Heßler and Irnich, 2022). On the other hand, the SPRP is practically well-solved with routing
policies that are rule-based heuristics such as traversal (a.k.a. S-shape), midpoint, largest gap (Hall, 1993),
return, composite (Petersen, 1997). The application of heuristic routing policies is well justified in settings
where pickers cannot perform all types of optimal tours, which can be complicated, counter-intuitive, and
difficult to memorize. Instead, pickers perform tours defined by some simple rules. A little bit more involved
is the routing when the policy combined is applied (Roodbergen and de Koster, 2001a). Both exact and
heuristic techniques have been extended into many different directions, e.g., to other warehouse layouts
(Roodbergen and Koster, 2001; Öztürkoğlu et al., 2012; Çelk and Süral, 2014), non-identical start and end
points (Masae et al., 2020a; Löffler et al., 2022), and multiple end depots (de Koster and van der Poort,
1998; Goeke and Schneider, 2021).

When one or several articles are pickable from more than one pick position, the warehouse operates as a
scattered storage warehouse or mixed shelves warehouse. Recent works (Weidinger, 2018; Boysen et al., 2019;
Weidinger et al., 2019) stress that scattered storage is predominant in modern e-commerce warehouses of
companies like Amazon or Zalando. The main advantage of this storage strategy is “that items of demanded
SKUs are found close by irrespective of the position within the warehouse [so that] the distance to be covered
for order picking is reduced this way” (Weidinger, 2018, p. 139). The SPRP with scattered storage (SPRP-SS)
is an integrated operational planning problem characterized by two levels of decisions. The picker routing
constitutes the lower-level decision, i.e., the lengths of different picker tours must be computed to evaluate
higher-level decisions. The higher-level decision is, for each requested article, the selection of one or several
storage positions from where a sufficient number of this article can be collected. If the selection has been
made, the resulting picker routing problem is the SPRP. However, both levels are interdependent and the
SPRP-SS is known to be NP-hard (Weidinger, 2018), even if optimal routing is replaced by one of the above
simple heuristic routing policies (Korbacher et al., 2023).

1.1. Contributions
The focus of our work is on algorithmic improvements for exactly solving the SPRP-SS. The effective

solution algorithm we propose relies on the following underlying modeling approach: Every feasible picker
tour is a path in the state space of the dynamic-programming approach of Ratliff and Rosenthal (1983),
and vice versa. The underlying assumption is that all pick positions are known and given. However, as
the picker routing problem is a subproblem of the integrated operational planning problems, the assembly
of favorable pick lists creates a new situation in which the selection of orders or pick positions becomes
essential. Our leading idea is to extend the state space of Ratliff and Rosenthal so that the selection aspect
is fully modeled. In the extended state space, every feasible picker tour is still a path. The requirement to
make consistent selections can be modeled as additional constraints in the shortest-path problem. We show
that this problem can be solved well as binary programs with the help of established mixed-integer (linear)
programming (MIP) solvers.
The contributions of the paper at hand can be summarized as follows:

• Based on the idea of extending the state space of Ratliff and Rosenthal, we present new binary for-
mulations for the SPRP-SS. These are standard network-flow formulations of the origin-to-destination
shortest-path problem (Ahuja et al., 1993) complemented with additional constraints. The formula-
tions are generic in the sense that they apply also to different warehouse layouts and other above-
mentioned extensions, since dynamic-programming approaches are known for their solution.

• For the SPRP-SS, the direct MIP-based solution approach outperforms the very recent approach of
Goeke and Schneider (2021), which uses another MIP formulation to be solved with a MIP solver, too.
Note that their model is less general and restricted to the single-block parallel-aisle warehouse layout.

• For the two-block parallel-aisle warehouse layout, we compare our MIP-based solution approach with a
straightforward exact algorithm for the generalized traveling salesman problem (GTSP Fischetti et al.,
2002). The latter approach is applicable only in the unit-demand case, i.e., when one unit of every
article is requested. In this case, it suffices to select a single picking position for each article. The
same is true if every picking position holds a sufficiently large supply of the respective article.

2

1.2. Structure
The paper is structured as follows. In Section 2, we review the dynamic-programming solution method

of Ratliff and Rosenthal (1983) and present the new model for the SPRP-SS using an extended state space.
Computational results for the SPRP-SS are then reported in Section 3. Section 4 draws final conclusions
and discusses future research directions.

2. Single Picker Routing Problems

The basic SPRP assumes that a set P of pick positions in the warehouse is given. The task is to find
a minimum length picker tour that starts and ends at the given depot (I/O point) 0 and traverses all
positions P . Clearly, this problem can be transformed into a traveling salesman problem (TSP) over the
vertex set P ∪ {0}, where the distance dij between a pair of vertices i, j ∈ P ∪ {0} is calculated according
to the warehouse geometry. Such an approach is very generic because it allows arbitrary warehouse layouts
(Theys et al., 2010). On the downside, however, a general TSP algorithm does not consider the specific
warehousing situation and is typically not efficient as the TSP is an NP-hard problem (Gutin and Punnen,
2002).

2.1. The State Space of Ratliff and Rosenthal’s Dynamic Program
More efficient solution approaches can exploit the warehouse layout. Starting with the seminal paper

of Ratliff and Rosenthal (1983) for a standard single-block parallel-aisle warehouse, picker tours have be
constructed in an aisle-by-aisle fashion giving rise to a dynamic programming (DP) formulation.

We briefly summarize the fundamental assumptions and ideas because they are essential for the under-
standing of our new solution algorithm. In a single-block parallel-aisle rectangular warehouse, the stock
keeping units (SKUs) are stored in racks along both sides of several parallel (picking) aisles. (The terms
SKUs and articles refer to the same objects, but we use article for what is requested by the customers,
and SKU for the objects stored in the warehouse.) Cross-aisles end the back and front of each aisle; they
are storage-free. The same number of equidistant cells divides each of the picking aisles into pick positions.
Picking from the right-hand side, from the left-hand side, or from both sides of a pick position is considered
identical when computing picker tour distances. Hence, multiple picking requests with different SKUs from
the identical pick position can be modeled as a single aggregated picking request. In the basic SPRP, the
pick list boils down to a set of required pick positions that the picker needs to visit in his/her picker tour.
The tour starts and ends at the given I/O point or transfer point, called depot in the following.

Figure 1 visualizes the construction of the optimal picker tour. The dynamic program models states and
transitions over so-called partial tour subgraphs (PTSs) which are subgraphs of an undirected graph with
vertices aj and bj located at the back and front of each aisle j ∈ J , respectively, where J = {1, 2, . . . ,m}
denotes the aisle set. One of these vertices also represents the depot. Moreover, additional vertices of the
different PTSs are placed at those pick positions where the picker makes a U-turn. The states of the dynamic
program represent the vertex parities (0, U, or E for not reached, odd (=uneven) degree, and even degree,
respectively) of the vertices aj and bj . The PTSs comprise those parts of the picker tour that belong to the
aisles 1 to j, either before the traversal of aisle j is included (we denote this stage as j−) or after its inclusion
(stage j+). Moreover, the states also indicate the number of connected components of the PTS: The two
last symbols 0c, 1c, and 2c indicate the empty subgraph, a subgraph with one, or with two connected
components, respectively. Ratliff and Rosenthal (1983) have shown that only seven states are possible for
optimal picker tours, namely

S = {UU1c, 0E1c, E01c, EE1c, EE2c, 000c, 001c}.

States are connected in the state graph (V,E) of the DP with two types of (directed) edges: An edge from
stage j+ to (j + 1)− determines a cross-aisle action describing the transition from aisle j to the next aisle
j + 1, i.e.,

Ecrossj = {00, 11, 20, 02, 22},

3

1

2

a1

b1

back:

front:

(a) State
UU1c
at stage 1+

1

2

3

4

5

6

a1

b1

a2

b2

back:

front:

(b) State
UU1c
at stage 2−

1

2

3

4

5

6

a1

b1

a2

b2

back:

front:

(c) State
EE1c
at stage 2+

1

2

3

4

5

6

7

8

9

a1

b1

a2

b2

a3

b3

back:

front:

(d) State
EE1c

at stage 3−

1

2

3

4

5

6

7

8

9

a1

b1

a2

b2

a3

b3

back:

front:

(e) State
EE1c

at stage 3+

o

d

States: ↓

UU1c

E01c

0E1c

EE1c

EE2c

000c

001c

Stages: → 1− 1+ 2− 2+ 3− 3+ 4−

11

20

22

00

02

22

00

20

02

22

00

22

1p
as

s
to

p

bo
tt
om

gap
2p

as
s

00

00

1pass

top
bottom

gap
2pass

11

1pass

top

bottom

gap

2pass

20

22

00

1p
as

s

top

bottom

gap

2pass

02

22

00

1p
as
s

top
bottom

gap
2pass

20

02

22

00

1p
as

s

top
bottom

gap2pass

22

1p
as

s
to

p

bo
tt
om

gap
2p

as
s

00

00

1pass

top
bottom

gap
2pass

1pass

top

bottom

gap

2pass
1p

as
s

top

bottom

gap

2pass

00

1p
as
s

top
bottom

gap
2pass

00

1p
as

s

top
bottom

gap2pass

1p
as

s
to

p

bo
tt
om

gap
2p

as
s

(f) State space (V,E)

Figure 1: Example of a warehouse with m = 3 aisles, C = 10 cells per aisle, and nine articles to be collected,
i.e., SKUs S = {1, 2, . . . , 9}; (1a)–(1e) picker tour subgraphs (PTSs) of the optimal picker tour; (1f) state
space of the dynamic program and optimal sequence of states and actions (in red/thick).

where the first (second) digit gives the number of traversals of the back (front) cross-aisle. An edge from
stage j− to j+ determines the aisle action, i.e.,

Eaislej = {1pass, 2pass, top, bottom, gap, void},

where 1pass (2pass) stands for a single (double) traversal through the aisle (back to front or vice versa), top
(bottom) for a traversal from the back (front) cross-aisle to the lowest (highest) pick position and backward,
gap for entering the aisle from both sides leaving a maximum length gap in the middle, and void for no
traversal through the aisle (the latter is only possible in aisles without products).

Each edge e ∈ Ecrossj ∪Eaislej is naturally associated with a cost describing the length of the part added
to the picker tour within an aisle j ∈ J as well as between consecutive aisles j and j + 1. For example, the
cost ce for e = 1pass is (proportional to) the height H of the warehouse (front to back). Moreover, the cost
ce for e = gap and aisle j = 2 in the example shown in Figure 1 is then 2H − 2v · 4, where v is the vertical
distance between two neighboring cells in an aisle, and the factor 4 results from the largest gap between
SKUs 4 and 5 stored in aisle 2. Likewise, the cost ce for e = 22 is 4h, where h is the horizontal distance
between two neighboring aisles.

4

When solving the dynamic program, the cost 0 is assigned to the initial state o = 000c at stage 0−

in a first step. Then, stage-by-stage (i.e., for 0+, 1−, 1+, 2−, . . .), the minimum cost is computed for
all states σ ∈ S using the previously computed costs of states of the predecessor stage. Optimal de-
cisions e(σ) ∈ Ecrossj ∪ Eaislej are stored for each j ∈ J . As a result, the cost attached to the final
state d = 001c at stage (m + 1)− is the length of a minimum-length picker tour. Backwards following
the optimal decisions provides the optimal sequence of states and decisions. In Figure 1, the sequences
are (o = 000c, UU1c, UU1c, EE1c, EE1c, EE1c, 001c = d) and (1pass, 11, 1pass, 22, top, 00) (highlighted in
red/bold). A complexity analysis shows that the DP can be built-up and solved in O (m + n) space and
time, when n is the number of articles to collect (Ratliff and Rosenthal, 1983; Heßler and Irnich, 2022).

2.2. Scattered Storage
Already Daniels et al. (1998) mentioned that the SPRP-SS emerges in two versions: In the so-called

unit-demand case, the requested number qs of items is qs = 1 for each article s ∈ S, where S denotes the
set of different articles to be collected. The unit-demand case is equivalent to the situation that each pick
position p ∈ P holds a sufficient supply bsp to satisfy the given demand qs of article s ∈ S, i.e., bsp ≥ qs
for all s ∈ S. Daniels et al. note that the resulting SPRP-SS is a special type of the generalized traveling
salesman problem (GTSP, Fischetti et al., 2002). Indeed, the sets Ps = {(s, p) ∈ S × P : bsp = 1} for s ∈ S
are the clusters. The start and end point 0 of the picker tour at the depot can be included as an extra
singleton cluster. The tasks of the GTSP is then to find a cost-minimal subtour that visits exactly one
vertex from each cluster.

The general-demand case is that several items of the same article can or must be retrieved from different
pick positions, which can only occur for qs > 1 for some s ∈ S. Daniels et al. proposed a TSP-type
formulation for the general-demand case of the SPRP-SS as well as a tabu search metaheuristic. Although
Gu et al. (2007) already stated the great research potential of the SPRP-SS, it received only little attention
up to the middle of the last decade. Weidinger (2018) coined the term mixed-shelves storage as a synonym for
scattered storage. Moreover, he showed that, for a single-block parallel-aisle warehouse, the determination of
a minimum-length picker tour is NP-hard. This remains true when optimal/exact picker tours are replaced
by tours constructed with rule-based routing policies such as traversal, midpoint, largest gap, return, and
composite (Korbacher et al., 2023) (this is a companion paper to the paper at hand; the former focusses
on SPRP-SS with different routing and storage policies and uses the techniques developed in this work for
policy evaluations). Note that routing heuristics are often used in practice (Hall, 1993; Petersen, 1997).

For exact solution approaches and optimal picker routing, Weidinger (2018) compared a decomposition
procedure (select the pick position by different priority rules and use the algorithm of Ratliff and Rosenthal
to determine a picker tour) with the MIP-approach of Daniels et al. complemented with MTZ-based subtour-
elimination constraints (Miller et al., 1960). Later, Goeke and Schneider (2021) presented an effective model
(when solved with a MIP solver). This formulation of the SPRP-SS is tailored to the single-block parallel-
aisle warehouse layout. We briefly summarize the model of Goeke and Schneider because we will compare
their model (denoted as the GS-model in the following) with our new model presented below. The GS-
model has some similarities with models known from arc routing (Corberán and Laporte, 2014). Instead of
computing a sequence of consecutively visited positions, the solution of the GS model provides an Eulerian
graph (connected and even), for which a picker tour can be computed afterwards (Eulerian graph first–
routing second). Note that also the dynamic program of Ratliff and Rosenthal provides an Eulerian graph
only. The main difference between transitions in the state space of Ratliff and Rosenthal and variables in the
GS-model is that decisions in the GS-model are finer than decisions on consecutive PTSs. For example, the
DP transition decides simultaneously on the traversal of the top and bottom cross-aisle, while two decisions
are made in the GS-model, one for the top and one for the bottom cross-aisle. In the GS-model, the finer
decision variables are then coupled by additional constraints ensuring consistency regarding even vertex
degrees and connectivity.

Independently, a rather involved MIP-based approach has been presented by Su et al. (2023) for multi-
block parallel-aisle warehouses. Unfortunately, this approach has not been compared to any GTSP-based
model.

5

Overall, for the exact solution of the SPRP-SS with general demand, the only two evaluated solution
approaches are MIP solver-based (Weidinger, 2018; Goeke and Schneider, 2021). It should also be noted
that the GS-model approach outperforms the previous approach of Weidinger (2018) by at least one order
of magnitude regarding MIP solver computation times and the size of warehouses that can be treated.

Formalizing the SPRP-SS is straightforward: Recall that S denotes the set of SKUs with demands qs
and Ps the set of positions from where bsp units of article s ∈ S can be collected. If the picker tour visits a
subset P ′ ⊆ P of all pick positions, the demand is fulfilled whenever

∑
p∈P ′∩Ps

bsp ≥ qs holds for all s ∈ S.
In this case the picker tour is feasible for the SPRP-SS.

1

2

2

3

1

3

2

1

4

10

9

8

7

6

5

4

3

2

i = 1

j = 1 2 3back:

front:

(a) The warehouse and optimal picker
tour; pick operations are encircled.

Aisle Type of additional aisle actions

j = 1 top(i) Cell i = 9
bottom(i) Cell i = 4
void

j = 2 top(i) Cell i ∈ {4, 8}
bottom(i) Cell i ∈ {2, 4, 8∗}
gap(h, i) Cells (h, i) ∈ {(2, 8)‡, (2, 9), (4, 9)}

j = 3 bottom(i) Cell i ∈ {1, 7}
gap(h, i) Cells (h, i) = (1, 9)

(b) Additional aisle actions compared to non-scattered
storage. ∗: dominated by bottom(4). ‡: dominated by
gap(2, 9).

Figure 2: SPRP with scattered storage. The pick list contains four SKUs S = {1, 2, 3, 4} (unit demand).

Figure 2a visualizes an instance of the SPRP-SS: There are four SKUs S = {1, 2, 3, 4} to be collected.
We assume unit demands, i.e., q1 = · · · = q4 = 1. Supplies are placed as shown in the figure, i.e., the first
three SKUs are stored at two or three positions each, while SKU 4 has a unique position in aisle 3. The
depicted tour is feasible as it can collect all four SKUs.

2.3. Extended State Space for Scattered Storage
We describe now the extended state space for a standard warehouse with parallel aisles and a single

block layout. The number of stages and the states within each stage remain identical to the state space of
Ratliff and Rosenthal. The vertices of the state graph are denoted by V , i.e., V is the set of all states S
duplicated for all stages 1−, 1+, 2−, 2+, . . . ,m−,m+, (m + 1)−, see Figure 1f. Moreover, cross-aisle actions
Ecrossj (connecting stages j+ and (j + 1)−) remain identical. However, additional aisle actions have to be
added.

For the SPRP-SS depicted in Figure 2a, the additional aisle actions are listed in Figure 2b. In aisle
j = 1, it is possible to pick only one SKU and also to completely skip this aisle because the SKUs 1 and 2
are also available in other aisles. In aisle j = 2, SKU 3 must be collected, either from position i = 2 or i = 8
making void and top(9) impossible (the latter is the traversal from the top with a U-turn in cell i = 9).
Moreover, both gap(2,8) and gap(2,9) can collect SKUs 2 and 3 but not 1. For the last aisle j = 3, SKU 4
must be collected so that void, top(7), and top(9) are not allowed. Note that all traversals gap(i, k) can
be disregarded if i and k are neighboring positions with a non-maximal gap. As in the dynamic program of
Ratliff and Rosenthal, these traversals are dominated by one with maximum gap. Overall, the set of aisle
traversals becomes aisle dependent. Hence, we denote by Eaislej the resulting set of arcs connecting stages
j− and j+ for all j ∈ J .

6

The aisle traversal set can be reduced by dominance considerations. In the example, gap(2,8) is domi-
nated by gap(2,9) because of its higher cost. Note that this is only true in the unit-demand case, because
otherwise gap(2,8) can provide more items of SKU 3. Likewise, bottom(8) is dominated by bottom(4).

For scattered storage with arbitrary demand, any aisle traversal e ∈ Eaislej that leaves out the posi-
tions P ′j ⊂ P in aisle j is feasible if and only if∑

(s,p)∈Ps: p/∈P ′j

bsp ≥ qs ∀s ∈ S. (1)

The term on the left-hand side is the total supply of the not left-out positions (it must be possible to
construct a feasible solution with the reached positions and all other aisle traversals referring to different
aisles).

For convenience, we define Pe as the set of positions covered by an aisle traversal e ∈ Eaislej in aisle
j ∈ J . Then, bse =

∑
p∈Pe

bsp is the quantity of SKU s ∈ S that can be collected when traversing the aisle
via e. We denote the edges with a non-negative supply of SKU s ∈ S by Es. Cross-aisle traversals have zero
supply bse = 0 for all e ∈ Ecrossj and j ∈ J .

For the following analysis of the size of the network and the model, it is important to properly distinguish
between the set of relevant pick positions and all pairs (s, p) with a positive supply bsp > 0. Note that several
articles s ∈ S might be available at the same pick position p, since, e.g., different SKUs might be placed to
the left- and right-hand-side of one position. Moreover, when stored in shelves, different SKUs can even be
placed vertically over one another at the same side. Summarizing, the number n = |

⋃
s∈S Ps| = |{p ∈ P :

∃s ∈ S with bsp > 0| of relevant positions can be smaller than the number |{(s, p) ∈ S × P : bsp > 0}| of
pairs with a positive supply bsp.

For counting the number of edges, note first that the original state space of Ratliff and Rosenthal has
only O (m) edges. Note also that the number of additional aisle transitions in the extended state space is
dominated by those of type gap(h, i), where h and i are two different pick positions within an aisle. The
worst case is that the majority of the pick positions concentrates in one or very few aisles so that there can
be O (n2) edges for aisle transitions of type gap(h, i). Therefore, the total number of edges is bounded by
O (m+ n2).

2.4. Network-Flow Formulation
We first analyze the situation with a unique aisle for an SKU before we formalize the general case.

Whenever every SKU s ∈ S is available in only one (unique) aisle j (e.g., SKU 3 in aisles 2 and SKU 4 in
aisle 3, see Figure 2), the feasibility regarding demand fulfillment is completely ensured by condition (1).
Every e ∈ Eaislej already ensures that the demand qs can be collected in aisle j. Even more, a shortest
o-d-path over the extended state graph provides an optimal picker tour. No constraints in addition to flow-
conservation constraints are mandatory. Hence, defining variables xe ≥ 0 for all E =

⋃
j∈J(E

aisle
j ∪Ecrossj),

directly leads to the standard o-d-shortest-path model for the SPRP-SS with unique aisles per SKU:

min
∑
e∈E

cexe (2a)

subject to
∑

e∈δ+(σ)

xe −
∑

e∈δ−(σ)

xe =

 +1, if σ = o
−1, if σ = d
0, otherwise

∀σ ∈ V (2b)

xe ≥ 0 ∀e ∈ E (2c)

The length of the resulting picker tour is minimized by (2a) with appropriately defined costs ce for all edges
e ∈ E. Flow conservation is ensured via (2b), where, for any state σ ∈ V , δ+(σ) and δ−(σ) denote the set of
arcs leaving and entering state σ, respectively. The domain of the flow variables is given by (2c). Note that
the demand fulfillment is ensured by the definition of E, since all SKUs are only available in one unique
aisle j.

7

The flow-conservation constraints (2b) can be rewritten in a more compact form as Nx = uo − ud
using the incidence matrix N of the state graph (V,E), the vector x = (xe)e∈E of the x-variables, and unit
vectors uo and ud ∈ {0, 1}V . The general SPRP-SS model for a not necessarily unique aisle per SKU is:

min
∑
e∈E

cexe (3a)

subject to Nx = uo − ud (3b)∑
e∈Es

bsexe ≥ qs ∀s ∈ S (3c)

xe ∈ {0, 1} ∀e ∈ E (3d)

The difference between models (2) and (3) is that for the general case of not necessarily unique aisles, the flow
variables must be forced to binary values due to the additional demand-covering constraints (3c). The latter
constraints can be strengthened by replacing bse with min{qs, bse} for all s ∈ S. In particular, this leads
to a pure {−1, 0, 1}-coefficient matrix of formulation (3) in the unit-demand case. Moreover, SKU-covering
constraints (3c) are redundant for every SKU s stored in a unique aisle. We assume both refinements in the
following.

A straightforward analysis of the size of formulation (3) can be summarized as follows: Let a = |S|
denote the number of different articles. The number of variables coincides with the number of edges in the
extended state space which is bounded by O (m+n2). The number of constraints is bounded by O (m+ a),
where constraints (3b) contribute the summand m and constraints (3c) the summand a. The number of
non-zero coefficients is bounded by O (m+ an2), since the incidence matrix has exactly 2|E| = O (m+ n2)
non-zeros, and the SKU-covering constraints (3c) have

∑
s∈S |Es| = O (an2) non-zero coefficients.

Clearly, the network-flow model (3) hides complicated details in the definition of the underlying state
space over which the flow-conservation constraints are defined. However, the model is generic and extensible,
as discussed in the following section.

2.5. Possible Extensions of the Modelling and Solution Approach
The combined approach of
• building the state space for the SPRP,
• extending the state space by additional actions for modeling additional options resulting from scattered

storage, and
• solving the o-d-shortest-path problem over the state graph with additional demand-covering constraints

using a MIP solver
is not limited to single-block parallel-aisle warehouses. Indeed, for parallel-aisle warehouses with one or
several ‘middle’ cross-aisles, Roodbergen and de Koster (2001a,b) have developed refined DP approaches.
Instead of deciding traversals per aisle, the decision process is broken down into finer decisions per block,
cross-aisle, and aisle. For example, with one middle cross-aisle there are three stages per aisle in the DP
(see Section 3.4). More generally, a fixed number of middle cross-aisles can be handled similarly so that
the computational complexity of the DP remains linear in m + n although the number of states grows
considerably due to the numerous cases of connectivity (Pansart et al., 2018). There exist several use cases
where starting and ending points of the picker tour do not coincide, for which Masae et al. (2020a); Löffler
et al. (2022) adapt the DP approach of Roodbergen and de Koster (2001b). DP-based optimal picker
routing has also been suggested for different warehouse layouts such as the fishbone layout (the warehouse
has two diagonal cross-aisles from where picking aisles extend horizontally and vertically, see Çelk and Süral,
2014). The same authors proposed a graph transformation from the fishbone layout as well as the flying-V
warehouse layout (the warehouse has parallel picking aisles perpendicular to the front and back cross-aisles,
see Gue and Meller, 2009; Çelk and Süral, 2014) to the rectangular layout with two blocks as considered
by Roodbergen and de Koster (2001b). Other non-conventional layouts that have been introduced in the
literature are U-shaped (see Glock and Grosse, 2012; Henn et al., 2013) and chevron layout (see Öztürkoğlu
et al., 2012). Recently, also a discrete cross aisle warehouse design has been developed in the literature (see

8

Ömer Öztürkoğlu and Hoser, 2019). What unifies all the DP models is that o-d-paths in the respective state
space represent feasible picker tours and vice versa.

3. Computational Results

In this section, we first specify details of the computational setup and implementation. Afterwards,
SPRP-SS benchmark instances are presented and results for the SPRP-SS in a single-block warehouse
(Section 3.3) and a two-block warehouse (Section 3.4) are analyzed and discussed. The section closes with
a cost comparison between single-block and two-block parallel-aisle warehouse layouts (Section 3.5).

3.1. Details of the Implementation
All algorithms are implemented in C++ using the callable library of CPLEX 20.1.0 and compiled into 64-bit

single-thread release code with Microsoft Visual Studio 2015. The computational study is performed on a
64-bit Microsoft Windows 10 computer with an Intel® Core™ i7-5930k CPU clocked at 3.5 GHz and 64 GB
of RAM. For the MIP solver, CPLEX’s default values of all parameters are kept except for the time limit and
setting the number of available threads to one.

For the experiments with the concorde TSP solver, we use a Linux/Ubuntu 22.04.2 LTS installation
inside the Windows Subsystem for Linux (WSL2) installed on the same PC. The solver itself is compiled
and installed using Alberto Santini’s fork (Santini, 2022) of concorde based on the most recent (2003)
version 03.12.19 (Applegate et al., 2003).

3.2. Benchmark Instances
The recent articles of Weidinger (2018) and Goeke and Schneider (2021) describe how different instances

of the SPRP-SS can be generated (we have summarized the procedure in Section A of the Appendix).
The layout is that of a single-block parallel-aisle warehouse with distance 3 between neighboring aisles and
distance 1 between neighboring cells/positions. An instance is characterized by a combination (m,C, n, α)
of the following four values: number m of aisles, number C of cells per aisle, number n of different articles to
be collected, and the scatter factor α. The scatter factor α indicates how often on average identical articles
occur at different pick positions. Note that α = 1 is the case of the classical SPRP without scattered storage.

Due to the ABC class-based instance generation process (see Section A of the Appendix), a pick list
tends to have more order lines with A-articles than with B- and C-articles. Moreover, A-articles tend to
have more pick positions compared to B- and C-articles. As a result, a typical pick list with n order lines
has more than αn corresponding pick positions (the reader might have expected exactly αn positions). For
example, instances with α = 10 and n = 30 have on average 656.9 pick positions.

Goeke and Schneider (2021) generated SPRP-SS instances with the goal to perform a kind of stress test
for their new formulation. The largest instances had m = 100 aisles (in practice, this huge number of aisles
is probably not served together with a single picker). Moreover, the largest scatter factor was chosen as
α = 50. For a (large) warehouse with m = 25 aisles, the result is that each article occurs on average twice
in each aisle.

We decided to generate instances closer to the real-world application with a different set of combina-
tions (m,C, n, α):

• m ∈ {5, 10, 25, 50}: we test 10 and 50 instead of 100;
• C ∈ {30, 60, 180}: as in (Goeke and Schneider, 2021);
• n ∈ {3, 7, 15, 30}: as in (Goeke and Schneider, 2021);
• α ∈ {1, 2, 5, 10}: we restrict the combinations by requiring α < m. This restriction makes the instances

more realistic, since otherwise a typical batch can just be collected from one or two aisles close to the
depot 0.

This gives 156 feasible combinations (m,C, n, α), and particularly, 108 combinations for α > 1. To obtain
statistically firm results, we generated 50 instances per combination.

We use the identical procedure to generate SPRP-SS instances for two-block parallel-aisle warehouses
by adding a middle cross-aisle to the one-block instances. For the sake of simplicity, two-block instances

9

have the middle cross-aisle exactly in the middle, e.g., between cell 15 and 16 in a warehouse with C = 30.
Overall, this benchmark set comprises 2 · 156 · 50 + 2 · 108 · 50 = 15,600 + 10,800 = 26,400 instances
(two summands for unit and general demand; factor two for one-block and two-block) available at https:
//logistik.bwl.uni-mainz.de/research/benchmarks/.

3.3. Computational Results for the Single-Block Parallel-Aisle Warehouse Layout
The only competitive exact algorithm for the SPRP-SS is, up to date, the MIP solver-based solution

of the model presented by Goeke and Schneider (2021). This approach (denoted by GS for the sake of
brevity) is now compared with the MIP solver-based solution of our network-flow (NF) formulation (3). We
implemented and tested the two formulations, making sure that both GS and NF find identical optimal
objective values for all instances.

We start with the experimental comparison of one special case. For the scatter factor α = 1, the resulting
problem reduces to a basic (non-scattered) SPRP, and the unit-demand and general-demand cases do not
need to be distinguished, since they lead to identical instances (recall that we replaced bse by min{qs, bse}
for all s ∈ S and e ∈ E, see Section 2.2). Moreover, in this special case, the original DP algorithm of Ratliff
and Rosenthal constitutes a third solution approach. For each group of instances with identical parameters
(m,C, n), let tDP, tNF, and tGS denote the average computation time (in milliseconds) for the solution of the
respective approach. Table 1 displays average times and tGS/tNF. The latter value tGS/tNF is the geometric
mean of the ratios of GS and NF solution times (over the 50 instances of each group). It is an estimate for
the speedup one can expect when replacing GS by NF. In particular, all values tGS/tNF > 1 indicate that
NF is faster than GS.

It is not surprising that DP is always the fastest algorithm, where all average computation times stay
below 2.5 milliseconds. Moreover, the speedup values tGS/tNF > 1 are between 5.5 and 23.1, with the trend
that speedups are increasing for larger warehouses (more aisles and more cells per aisle), and the reverse
trend can be observed for longer pick lists (increasing n-values). The general superiority of NF over GS can
be explained by the fact that the GS model does not have the integrality property, while NF—as a pure
network-flow model—is having it. As a result, the MIP solver needs to not only solve the linear relaxation
of the GS model, but it must close the integrality gap by cutting and branching, which takes more time
than the solution of the LP providing a solution of NF directly.

Table 1: Comparison of DP, NF, and GS with computation times (in milliseconds) and speedup factor
comparing GS and NF for the basic SPRP (non-scattered) and a one-block parallel-aisle warehouse.

Warehouse Number of articles in pick list
dimension n = 3 n = 7 n = 15 n = 30

(m,C) tDP tNF tGS
tGS
tNF

tDP tNF tGS
tGS
tNF

tDP tNF tGS
tGS
tNF

tDP tNF tGS
tGS
tNF

(5.30) 0.2 0.7 5.9 8.4 0.2 0.8 5.3 6.5 0.2 1.1 6.9 6.6 0.2 0.9 5.2 5.7
(5.60) 0.2 0.7 5.5 8.6 0.2 0.8 6.2 7.8 0.2 0.9 5.3 5.7 0.2 0.9 5.5 5.9
(5.180) 0.1 0.6 5.1 8.8 0.2 0.8 5.2 6.7 0.2 0.9 5.2 5.9 0.2 0.9 5.5 6.0
(10.30) 0.3 1.0 9.0 8.5 0.3 1.4 11.2 8.0 0.4 1.7 11.0 6.6 0.4 1.9 13.8 7.4
(10.60) 0.3 1.1 10.0 9.6 0.3 1.4 10.1 7.1 0.3 1.8 11.6 6.6 0.4 1.9 13.8 7.5
(10.180) 0.3 1.0 8.9 8.3 0.3 1.4 13.0 9.5 0.3 1.7 12.1 7.2 0.4 1.8 12.9 7.0
(25.30) 0.8 2.4 31.5 13.2 0.9 3.1 32.1 10.5 1.0 3.9 29.1 7.6 1.0 4.8 33.2 7.0
(25.60) 0.8 2.4 50.7 20.2 0.7 3.1 42.6 13.5 0.8 3.8 36.6 9.5 0.9 4.7 37.9 8.1
(25.180) 0.7 2.4 40.4 16.8 0.8 3.0 45.5 15.3 0.9 3.9 36.8 9.4 1.0 4.9 39.8 8.3
(50.30) 1.8 5.6 75.0 11.9 2.0 6.5 76.6 11.9 1.8 7.8 86.1 10.9 2.1 9.6 64.0 6.7
(50.60) 1.7 5.6 119.7 21.3 1.8 6.7 148.1 22.2 2.1 7.8 104.2 13.1 2.1 9.7 95.1 9.9
(50.180) 1.8 5.8 116.5 18.7 1.8 6.5 151.0 23.1 1.9 7.7 126.6 16.3 2.5 10.9 215.8 19.6

For the true scattered case (α > 1), Table 2 and Table 7 in the Appendix show aggregated results for
unit demand as well as general demand, respectively. The comparison is only between GS and NF, since
the direct DP approach is no longer applicable. The overall average speedup of NF over GS is 3.6. For
both NF and GS, the trend is that instances with a higher number n of articles in the pick list, a larger
warehouse (more aisles and cells), and a larger scatter factor α are more difficult to solve optimally, i.e.,

10

https://logistik.bwl.uni-mainz.de/research/benchmarks/
https://logistik.bwl.uni-mainz.de/research/benchmarks/

their solution by the MIP solver consumes more time. One can however expect computation times below
one second for (realistically sized) warehouses with not more than 25 aisles. Even the most difficult setting
for (m,C, n, α) = (50, 180, 30, 10) has average computation times below 10 seconds.

Table 2: Comparison of NF and GS with computation times (in milliseconds) and speedup factor comparing
GS and NF for the SPRP-SS, a one-block parallel-aisle warehouse, and a sufficient number of items (unit
demand; bse = qs = 1).

Scatter Warehouse Number of articles in pick list
factor dimension n = 3 n = 7 n = 15 n = 30

(m,C) tNF tGS
tGS
tNF

tNF tGS
tGS
tNF

tNF tGS
tGS
tNF

tNF tGS
tGS
tNF

α = 2 (5, 30) 5.5 18.9 3.7 7.2 18.7 2.8 14.3 16.0 1.2 23.5 21.1 1.0
(5, 60) 5.1 20.3 4.6 8.2 27.9 3.2 13.7 22.7 1.7 29.9 24.9 1.0
(5, 180) 5.0 19.3 4.7 8.5 43.8 5.0 16.7 29.8 1.8 36.6 24.1 0.7
(10, 30) 9.4 43.5 5.3 14.8 50.4 4.3 22.5 51.2 2.4 41.2 43.8 1.1
(10, 60) 9.2 63.7 7.3 16.6 73.0 5.3 23.1 55.8 2.8 44.2 53.9 1.3
(10, 180) 8.6 67.8 8.8 14.1 95.2 7.8 22.0 51.5 2.6 49.2 47.0 1.1
(25, 30) 16.5 104.7 6.9 23.4 128.4 6.0 31.3 110.5 3.8 65.7 128.8 2.4
(25, 60) 15.2 147.1 10.4 22.4 141.0 7.1 26.8 114.2 4.5 47.6 125.3 2.7
(25, 180) 16.5 175.5 11.0 23.4 290.0 13.0 33.3 195.4 6.8 52.6 152.9 3.3
(50, 30) 24.1 191.6 9.6 28.1 237.1 10.2 39.2 177.6 5.1 53.7 209.5 3.9
(50, 60) 24.2 244.2 11.9 29.8 371.5 12.4 38.8 371.7 9.7 49.8 221.3 4.5
(50, 180) 31.8 999.4 35.3 37.3 1207.7 39.8 34.8 901.8 27.6 58.7 480.1 8.4

α = 5 (10, 30) 13.9 61.9 4.5 43.9 150.8 3.8 89.8 155.7 1.7 154.3 129.8 0.8
(10, 60) 18.4 84.4 5.4 44.2 175.4 4.6 124.5 276.0 2.6 274.9 251.8 0.9
(10, 180) 15.1 76.7 5.7 37.7 174.8 5.0 131.3 370.5 3.2 419.8 443.8 1.0
(25, 30) 39.3 168.2 5.7 109.4 265.5 3.8 174.2 280.1 1.9 483.9 411.1 0.9
(25, 60) 44.2 189.8 4.8 138.8 377.4 4.6 228.2 564.3 3.4 623.9 630.8 1.1
(25, 180) 37.7 344.6 10.3 144.9 948.1 10.9 296.2 1746.6 7.7 644.5 1039.8 1.9
(50, 30) 74.1 230.8 3.8 142.1 397.6 4.5 206.5 482.0 2.8 456.2 749.3 2.1
(50, 60) 85.6 467.7 8.6 153.2 910.5 12.0 252.3 1077.5 5.4 634.8 1658.1 3.6
(50, 180) 67.0 559.7 10.2 165.5 1876.3 13.9 404.9 6010.8 14.4 645.7 3831.0 5.2

α = 10 (25, 30) 184.8 338.7 2.9 648.5 639.9 1.5 1807.9 1275.4 1.1 3008.6 1864.1 0.8
(25, 60) 181.2 497.2 3.8 1104.9 1091.5 1.8 3413.3 2751.6 1.1 4925.3 4123.8 0.9
(25, 180) 150.8 552.6 5.0 813.2 1783.2 3.4 3388.7 6739.9 3.1 6726.6 12 995.8 2.3
(50, 30) 525.5 625.5 1.7 2424.6 1971.9 2.4 2331.4 2675.7 1.7 4989.8 4206.2 1.0
(50, 60) 660.5 914.5 2.5 2076.2 2612.3 3.7 3530.8 4787.4 2.2 6173.1 7564.4 1.4
(50, 180) 516.6 1300.2 3.4 1465.9 6495.3 8.2 4447.5 15 670.6 4.5 8299.9 36 138.2 4.4

Looking more closely at the case of a sufficient number of items (unit demand, Table 2), NF is superior to
GS (tNF < tGS) for almost all groups. Some exceptions occur for pick lists of size n = 30 and warehouses with
m ≤ 25 aisles. Even in these cases, the factor tGS/tNF is always greater than or equal to 0.7. For the example
of (m,C, n, α) = (5, 180, 30, 2) with tGS/tNF = 0.7, the 30 articles are on average stored at 112.1 > 60 = 2·30
positions in a narrow warehouse with only five aisles but 180 cells per aisle. This is a rather obscure setting.
On the other extreme, the highest average speedup of value tGS/tNF = 39.8 was obtained for instances for
(m,C, n, α) = (50, 180, 7, 2). Indeed, the speedup mainly depends on the warehouse size: the greater m and
C, the greater tGS/tNF.

For SPRP-SS instances with general demand (Table 7 in Section B of the Appendix), the trends for
what makes instances difficult is the same as in the unit-demand case. However, computation times tNF are
longer, e.g., the smallest (largest) times of 5 milliseconds (8.3 seconds) for the unit-demand case rise to 47
milliseconds (20.6 seconds). On average, general demand leads to a 4.7 and 2.8 times slower solution of NF
and GS, respectively. The factor tGS/tNF shows similar trends as for unit demand, but the absolute speedup
is lower. The highest value amounts to tGS/tNF = 16.1, the lowest to 0.5. The 19 cases (of 108) where NF
is inferior to GS, i.e., tGS/tNF < 1, the pick list is relatively long (three cases for n = 15 and 16 cases for
n = 30).

Finally, we analyze to which extent the computation time vary. To this end, we compute the coeffi-
cient of variation (CT) of the computation times for each group (50 instances per parameter combina-

11

tion (m,C, n, α)). Over the 156+108 groups, the minimum, average, and maximal CT-values are 0.35, 0.80,
and 2.20 for GS compared to 0.10, 0.70, and 1.86 for NF, respectively. Overall, the computation times of
NF are more predictable and stable than for GS.

In total, NF outperforms GS with the exception of a few extreme parameter combinations mentioned
above.

3.4. Computational Results for the Two-Block Parallel-Aisle Warehouse Layout
Next, we consider the two-block parallel-aisle warehouse layout. For this type of warehouse, the basic

(non-scattered, α = 1) SRPR can be solved with the DP algorithm of Roodbergen and de Koster (2001b),
which is a non-trivial extension of the DP approach of Ratliff and Rosenthal (1983). Section C of the
Appendix characterizes and visualizes the state space of the DP, which comprises 3m + 1 stages (for each
aisle, there are aisle actions in the back block, aisle actions in the front block, and cross-aisle action; plus one
stage for an artificial destination state) with 25 states each. Although it seems large, the state space (V,E)
has a linear number O (m) of states and edges. With the techniques described in (Heßler and Irnich, 2022),
also the DP can be constructed in linear time O (m + n) including all cost computations, where n is the
length of the pick list, i.e., the number of different articles to be collected. Moreover, the non-scattered
instances can be solved as TSPs. For this purpose, we use the popular publicly available concorde TSP
solver (Applegate et al., 2003), which is based on branch-and-cut and integrates a chained Lin-Kernighan
TSP heuristic to compute upper bounds.

When considering scattered articles (α > 1), the only competitive approach is the solution of a GTSP.
For an exact GTSP solution, branch-and-cut algorithms outperform earlier solution attempts with dynamic
programming and branch-and-bound. As far as we know, there is no branch-and-cut implementation publicly
available. Therefore, we re-implemented the branch-and-cut algorithm of Fischetti et al. (2002). Section D of
the Appendix briefly summarizes the underlying formulation and sketches similarities and minor differences
of our branch-and-cut implementation in comparison to one of Fischetti et al. In the below evaluation, we
use our GTSP solver for comparison with the new NF formulation (3) solved ‘out of the box’ with the MIP
solver CPLEX.

Table 3: Comparison of DP, NF, and TSP with computation times (in milliseconds) as well as speedup
factor comparing TSP and NF for the basic SPRP (non-scattered) and a two-block parallel-aisle warehouse.

Warehouse Number of articles in pick list
dimension n = 3 n = 7 n = 15 n = 30

(m,C) tDP tNF tTSP
tTSP
tNF

tDP tNF tTSP
tTSP
tNF

tDP tNF tTSP
tTSP
tNF

tDP tNF tTSP
tTSP
tNF

(5, 30) 0.1 2.5 0.5 0.3 0.1 3.8 0.7 0.2 0.2 5.8 5.8 1.1 0.2 8.3 32.4 4.6
(5, 60) 0.1 2.6 0.5 0.3 0.1 5.1 0.9 0.2 0.2 5.7 5.9 1.3 0.2 8.4 31.4 4.6
(5, 180) 0.1 1.8 0.5 0.3 0.2 3.7 0.7 0.3 0.2 6.7 7.9 1.4 0.2 7.8 28.4 4.1
(10, 30) 0.2 4.2 0.4 0.1 0.3 5.4 0.7 0.1 0.4 11.6 5.7 0.6 0.5 15.7 19.9 1.3
(10, 60) 0.2 3.4 0.5 0.2 0.3 6.1 0.8 0.2 0.4 12.1 6.8 0.7 0.5 17.2 24.6 1.5
(10, 180) 0.2 2.9 0.4 0.2 0.3 6.5 0.7 0.1 0.4 12.2 8.0 0.8 0.5 15.9 32.4 2.2
(25, 30) 0.9 6.4 0.4 0.1 1.0 13.7 0.7 0.1 1.2 24.0 7.7 0.3 1.4 36.4 22.4 0.6
(25, 60) 0.9 8.1 0.5 0.1 1.1 13.7 0.8 0.1 1.2 24.4 6.5 0.3 1.4 36.3 19.3 0.6
(25, 180) 0.9 6.7 0.5 0.1 1.0 12.2 0.8 0.1 1.2 21.9 8.3 0.4 1.4 36.6 31.1 0.9
(50, 30) 3.2 16.2 0.5 < 0.1 3.6 24.9 0.7 < 0.1 3.9 35.8 10.7 0.3 4.2 54.2 33.4 0.6
(50, 60) 3.3 18.5 0.4 < 0.1 3.8 27.0 0.7 < 0.1 4.1 39.7 7.9 0.2 4.3 55.6 20.5 0.4
(50, 180) 3.3 14.3 0.5 < 0.1 3.6 23.3 0.7 < 0.1 4.0 41.2 7.0 0.2 4.2 57.7 27.7 0.5

The following computational analysis for the two-block parallel-aisle warehouse layout follows a similar
sequence as in the previous section for the one-block warehouse. For the non-scattered case, i.e., the basic
SPRP, we compare the DP of Roodbergen and de Koster (2001b) with the MIP-solver-based solution of the
o-d-shortest path formulation (2) and the TSP solver concorde. The results are summarized in Table 3. As
for the one-block case, the direct DP-based solution is very fast with average solution times tDP between
0.1 and 4.3 milliseconds per group. For small values of n ≤ 7, i.e., short pick lists, the TSP solver concorde
even outperforms the DP regarding solution times. Since the structure of the TSP model is independent

12

of the warehouse layout, the times tTSP are not systematically affected by the parameters m and C but
increase with the pick list length n from 0.4 to 33.4 milliseconds in the worst case. Our own NF approach
is always outperformed by DP or TSP. However, for the longest pick lists (n = 30) and small warehouses
with not more than ten aisles, the NF approach outperforms the TSP approach. As this is the classical
non-scattered case, these results should just be taken as a sidenote.

For the scattered case, i.e., α > 1, we compare our NF formulation (3) solved with the MIP-solver and
the GTSP solver. As for the GS formulation analyzed in the previous sections, pre-tests have shown that the
MIP solver solution times for the GTSP branch-and-cut implementation can fluctuate substantially. Due
to the large number of instances to be solved, we have set a strict time limit of 60,000 milliseconds for the
GTSP solver.

The results of the comparison for the two-block SPRP-SS instance with unit demand are summarized in
Table 4. The number n of articles to collect has the highest impact:

• For n = 3, the GTSP instances have exactly four clusters (with one singleton cluster for the depot) and
the GTSP solver is the clear winner. This outcome was highly predictable, because the branch-and-cut
approach does not require subtour elimination, which makes it very fast. Note that even a complete
enumeration of all feasible GTSP solutions is feasible in this case. These instances are easy to solve.

• For n = 7, average computation times tNF and tGTSP are in the same range. For increasing values of
m and C, times tend to increase slightly, probably due to larger cost coefficients and objective values,
which tend to slow down the MIP solver and so the branch-and-cut. For all groups (m,C, α), the
MIP solver with NF is faster than the GTSP solver. Note that the GTSP solver could not solve some
instances within the given time limit. Table 5 shows the number of solved and unsolved instances per
combination of α and n. As expected, larger α-values lead to larger and more difficult instances.

• For n = 15, the picture changes completely and NF becomes the clear winner. Here, about one quarter
of the instances with α = 5 is solved with the branch-and-cut GTSP solver, while not a single instance
with α = 10 is solved optimally (see Table 5). The average speedup values tGTSP/tNF range from 1.3
to 72.2 counting unsolved GTSP instances with 60 seconds. This means that for α ≥ 5 the true
speedup is even larger.

• For n = 15, only instances with a small scatter factor of α = 2 are solved exactly with the GTSP
solver. Here, the speedups achieved by our NF-based algorithm range from 7.2 to 95.6 (with the same
bias as above).

Comparing Tables 2 and 4, we see that the two-block SPRP-SS instances are much harder to solve than
the single-block instances. This statement can be supported by comparing the average NF computation
times for the 156 combinations of (m,C, n, α). More precisely, we compute the geometric mean GM of the
ratios of the corresponding pairs of 2-block NF times and the 1-block NF times in the two tables. Note that
the result GM = 7.63 is a geometric mean of 156 geometric means. The value GM = 7.63 is plausible as
explained below:

• The number of states per stage increases by a factor of 25/7 ≈ 3.57 in the two-block DP compared to
the one-block DP.

• The number of stages increases by a factor of approximately 3/2 = 1.5 (3m+ 1 versus 2m+ 1).
• Aisle actions and cross-aisle actions are not equally represented in the two-block state space. The

number of aisle actions (counted as edges in the state space) increases by a factor of approximately 2 ·
25/7 = 7.14, while the number of cross aisle actions increases by a factor of approximately the 25/7 =
3.57.

• As a result, in formulation (3), the number of xe-variables (related to edges e ∈ E) increases by a
factor between 3.57 and 7.14. In addition, the number of flow-conservation constraints increases by a
factor of 7.14. Typically, MIP solution times grow progressively with an increasing number of variables
and constraints, which explains why the computed geometric mean of GM = 7.63 is larger than the
individual factors.

Overall, the new NF-based solution approach is highly competitive for non-trivial instances of the SPRP-
SS and two-block parallel-aisle warehouses. For a likely realistic scatter factor of α = 2 (see also Korbacher
et al., 2023), the average NF solution times are less than 1 second even for longer pick lists with n = 30
different articles.

13

Table 4: Comparison of NF and GTSP with computation times (in milliseconds) and speedup factor com-
paring GTSP and NF for the SPRP-SS, a two-block parallel-aisle warehouse, and a sufficient number of
items (unit demand; bse = qs = 1).

Scatter Warehouse Number of articles in pick list
factor dimension n = 3 n = 7 n = 15 n = 30

(m,C) tNF tGTSP
tGTSP
tNF

tNF tGTSP
tGTSP
tNF

tNF tGTSP
tGTSP
tNF

tNF tGTSP
tGTSP
tNF

α = 2 (5,30) 22.5 4.6 0.3 37.9 41.6 1.1 82.4 838.1 8.9 131.6 9784.7 66.2
(5,60) 27.6 4.9 0.3 40.0 53.4 1.3 74.4 1436.5 15.0 171.2 16 820.1 85.0
(5,180) 34.6 5.8 0.4 51.3 100.0 1.9 88.0 2732.2 27.4 228.1 28 601.4 95.6
(10,30) 42.8 5.1 0.2 76.8 39.0 0.6 114.3 601.9 4.8 190.8 7296.1 39.8
(10,60) 56.8 4.6 0.2 66.2 51.6 0.8 106.9 528.7 4.3 236.7 10 971.1 44.3
(10,180) 41.5 4.8 0.3 72.5 70.1 1.0 113.8 620.4 4.8 207.9 11 923.6 55.1
(25,30) 60.8 4.4 0.1 103.5 44.5 0.4 175.6 590.1 3.2 459.0 9995.3 23.7
(25,60) 73.6 4.9 0.1 89.9 38.6 0.4 175.2 352.9 2.0 381.5 6651.6 17.0
(25,180) 84.2 5.6 0.1 99.1 55.1 0.5 170.8 322.2 1.7 361.4 4344.7 11.8
(50,30) 79.3 5.0 0.1 131.8 71.8 0.5 302.5 1568.3 4.7 677.0 18 461.7 28.9
(50,60) 113.8 4.4 0.1 145.2 59.5 0.4 295.3 634.3 2.1 641.7 8475.7 13.5
(50,180) 311.5 7.6 0.1 214.1 66.8 0.4 309.8 386.3 1.3 694.6 5006.3 7.2

α = 5 (10,30) 226.2 16.0 0.1 677.5 3582.5 7.2 1193.9 55 505.5 56.8 1782.3 TL
(10,60) 268.0 30.5 0.2 1221.4 7956.1 15.5 1600.8 57 834.6 61.8 3511.0 TL
(10,180) 362.6 25.4 0.2 840.0 6649.9 13.4 2591.9 58 170.3 42.2 3769.1 TL
(25,30) 307.1 16.3 0.1 604.4 3741.5 9.6 1163.8 57 854.6 41.4 2690.8 TL
(25,60) 542.4 33.9 0.1 1024.4 3247.1 6.1 1648.4 52 296.2 72.2 3374.6 TL
(25,180) 546.1 25.1 0.1 2427.1 4886.9 7.5 2784.1 50 925.8 43.1 3910.5 TL
(50,30) 701.5 19.2 0.1 866.9 3722.8 5.7 2020.6 54 426.0 28.5 4936.3 TL
(50,60) 1042.7 22.1 0.0 4378.5 5083.3 5.5 2991.8 51 008.7 23.0 13 729.0 TL
(50,180) 1502.9 21.7 0.0 3989.7 5430.8 2.6 5013.4 49 855.9 20.5 13 880.6 TL

α = 10 (25,30) 7389.3 153.8 0.0 8925.1 34 389.8 4.6 9570.1 TL 13 396.5 TL
(25,60) 8023.3 84.4 0.0 14 667.5 33 585.2 3.0 19 454.6 TL 24 542.0 TL
(25,180) 6195.9 95.3 0.0 14 247.6 36 423.9 2.6 25 830.5 TL 42 470.7 TL
(50,30) 14 024.4 83.6 0.0 35 456.2 35 214.3 1.9 49 075.5 TL 57 780.0 TL
(50,60) 14 747.3 120.8 0.0 23 046.9 32 552.5 1.9 25 993.7 TL 89 760.9 TL
(50,180) 12 072.0 73.3 0.0 27 427.3 34 496.4 2.1 47 036.3 TL 66 002.8 TL

Note: TL indicates that no instance was solved within 60 seconds (60,000 milliseconds).

Table 5: Instances solved (not solved) by branch-and-cut GTSP solver for the SPRP-SS, a two-block parallel-
aisle warehouse, and a sufficient number of items (unit demand; bse = qs = 1).

Scatter Number of articles in pick list
factor n = 3 n = 7 n = 15 n = 30

α = 2 600 (0) 600 (0) 600 (0) 587 (13)
α = 5 450 (0) 447 (3) 106 (344) 0 (450)
α = 10 300 (0) 218 (82) 0 (300) 0 (300)

Finally, Table 8 in Section B of the Appendix presents the results of the computational tests obtained
for the two-block SPRP-SS instances with general demand. Recall that for this type of SPRP-SS instances,
there is no alternative solution approach other than our NF formulation currently available. Comparing these
results with Table 4, we see that the general-demand case is computationally more demanding than the unit-
demand case. For the scenario with α = 2 and n = 30 just discussed, MIP solver solution times tNF can
exceed 2 seconds. For larger values of α ≥ 5, the spread between average computation times of corresponding
(m,C, n, α)-groups can even exceed a factor of 5.

3.5. Cost Comparison Between Single-Block and Two-Block Parallel-Aisle Warehouse Layouts
Finally, we compare the cost (z1b) of optimal tours for SPRP-SSs defined for a single-block and the

corresponding cost (z2b) for a two-block parallel-aisle warehouse. Table 6 shows the average cost reduction
in percent for instances with a sufficient number of items (the unit-demand case).

For all instance groups, the addition of the middle cross-aisle in the two-block layout results in a significant
cost reduction. On the one hand, the higher the numbers m, C, and n (of aisles, cells per aisle, and articles

14

Table 6: Average cost reduction in percent (100 · (z1b − z2b)/z1b) of SPRP-SS instances with two-block
compared to single-block parallel-aisle warehouse layout; all instances have a sufficient number of items
(unit demand; bse = qs = 1).

Scatter Dimension Number of articles in pick list
factor (m,C) n = 3 n = 7 n = 15 n = 30

α = 1 (5, 30) 11.2 16.2 15.1 6.2
(5, 60) 10.1 17.4 19.2 10.3
(5, 180) 13.9 19.0 24.5 14.5
(10, 30) 11.4 19.8 20.3 17.0
(10, 60) 15.1 23.6 27.7 23.1
(10, 180) 15.4 25.1 31.6 26.1
(25, 30) 9.1 16.0 20.1 23.5
(25, 60) 12.0 19.7 24.3 27.2
(25, 180) 17.3 28.9 36.2 36.6
(50, 30) 6.1 10.4 16.1 20.2
(50, 60) 10.4 18.5 24.9 29.1
(50, 180) 14.0 25.6 33.4 36.4

α = 2 (5, 30) 8.6 13.4 14.6 12.5
(5, 60) 10.2 18.8 18.0 18.3
(5, 180) 8.5 21.0 19.4 21.4
(10, 30) 8.5 14.2 16.1 17.9
(10, 60) 11.7 16.8 22.4 22.8
(10, 180) 11.1 23.1 25.3 25.8
(25, 30) 8.3 13.1 15.7 18.7
(25, 60) 11.5 18.5 20.9 22.2
(25, 180) 15.0 21.4 26.4 29.6
(50, 30) 7.7 10.8 13.7 15.7
(50, 60) 7.8 13.2 18.3 20.9
(50, 180) 12.6 21.0 22.9 27.5

α = 5 (10, 30) 3.0 12.5 13.1 15.8
(10, 60) 1.6 11.7 15.8 18.7
(10, 180) 3.5 12.4 18.1 19.8
(25, 30) 3.9 11.4 10.9 13.7
(25, 60) 3.5 13.7 18.0 17.9
(25, 180) 3.2 15.3 19.6 21.0
(50, 30) 7.9 10.2 10.6 11.9
(50, 60) 9.9 12.9 14.2 15.6
(50, 180) 6.3 16.2 23.2 22.7

α = 10 (25, 30) 2.5 11.5 13.1 14.5
(25, 60) 1.6 10.1 18.0 16.8
(25, 180) 0.9 6.9 19.4 22.5
(50, 30) 3.4 13.0 10.2 11.4
(50, 60) 3.7 14.3 16.0 15.8
(50, 180) 2.1 12.0 20.3 23.1

in the pick list), the higher the respective cost reduction. On the other hand, the higher the scatter factor α,
the lower the cost reduction. We interpret the latter effect in the sense that, with an additional middle
cross-aisle, the tour length decreases less strongly if articles are available at several positions and, especially,
in several aisles. However, even with massive scattering (see results, e.g., α = 10) and for relatively small
warehouses and short pick lists, the positive effect of a cross-aisle is always significant. Overall, the highest
average cost reduction is 36.6% for the group (α,m,C, n) = (1, 25, 180, 30).

4. Conclusions and Outlook

We have introduced a new approach to exactly solve the SPRP-SS which is a two-level optimization
problem. The higher-level decision is the selection of pick positions for requested articles that are collectible
from, in general, more than one pick position per article. The modeling of the lower-level picker routing

15

decisions is inspired by the dynamic program of Ratliff and Rosenthal (1983). To properly cope with the
selection aspect, we extended the state space of Ratliff and Rosenthal. Since solving a dynamic program over
the extended state space does not result in a feasible solution, we add consistency constraints and propose
to solve the resulting picker-routing problems with the help of a MIP solver.

Our work shares some similarities with recent approaches that exploit the fact that pseudo-polynomial
formulations exist for several fundamental problems (de Lima et al., 2022). For example, in cutting and
packing, a feasible structure, i.e., a cutting pattern or packing of items, is in one-to-one correspondence with
a path in the underlying state space over which the pseudo-polynomial formulation is defined. Solving these
formulations with a MIP solver has become possible even for large instances, either directly or by nesting
optimal solutions with (a sequence of) restrictions and relaxations of the respective pseudo-polynomial
formulation. Our approach is, however, different as we do not directly use the original state space. We
first extend the state space, then add consistency constraints, and finally solve the resulting pure binary
formulation using a MIP solver.
The new modeling and solution approach has several advantages:

• We have presented a new binary formulation for the SPRP-SS which is simple and elegant in the sense
that only very few types of variables and constraints are needed to entirely capture the respective
problem (one may compare with the models of Goeke and Schneider, 2021; Su et al., 2023).

• Our modeling approach is generic, since it applies to variants of the picker routing problem whenever
a dynamic-programming approach is known for this variant. This includes different warehouse lay-
outs, multiple possible endpoints of a picker tour, and other extensions (Masae et al., 2020b; Löffler
et al., 2022). To prove this statement, we have adapted the new solution approach from the standard
single-block parallel-aisle warehouse layout (used as an example in the majority of the warehousing
publications) to the two-block variant (cf. Section 2.5).

• To date, all exact solution approaches for the SPRP-SS use integer programming formulations solved
directly with a MIP solver. The most competitive one is the recent and remarkably well-performing
formulation of Goeke and Schneider (2021), for which the associated article received the Meritorious
Paper Award of the journal INFORMS Journal on Computing. Our new network flow-based formula-
tion for the SPRP-SS mostly outperforms it with an overall average speedup ratio of 3.6.

Other integrated operational planning problems in warehousing that include a picker routing component
(see van Gils et al., 2018) may benefit from our modeling and solution method as well. Examples of two- or
multi-level optimization problems are storage assignment (Petersen and Schmenner, 1999), order batching
and sequencing (Menéndez et al., 2017), and joint order batching and picker routing (JOBPRP, Wahlen
and Gschwind, 2022) with scattered storage. This latter JOBPRP extension gives rise to an integrated
three-level optimization problem of grouping orders, selecting pick positions, and routing pickers.

Acknowledgement

The authors thank Laura Korbacher for fruitful discussions and Siska Langsdorf for her support to
produce the figures of the Appendix.

References

Ahuja, R., Magnanti, T., and Orlin, J. (1993). Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Englewood
Cliffs, New Jersey.

Applegate, D. L., Bixby, R. E., Chvatal, V., and Cook, W. J. (2003). Concorde-03.12.19. Website. https://www.math.
uwaterloo.ca/tsp/concorde/index.html.

Boysen, N., de Koster, R., and Weidinger, F. (2019). Warehousing in the e-commerce era: A survey. European Journal of
Operational Research, 277(2), 396–411.

Çelk, M. and Süral, H. (2014). Order picking under random and turnover-based storage policies in fishbone aisle warehouses.
IIE Transactions, 46(3), 283–300.

Corberán, Á. and Laporte, G., editors (2014). Arc Routing. Society for Industrial and Applied Mathematics, Philadelphia, PA.
Daniels, R. L., Rummel, J. L., and Schantz, R. (1998). A model for warehouse order picking. European Journal of Operational

Research, 105(1), 1–17.

16

https://www.math.uwaterloo.ca/tsp/concorde/index.html
https://www.math.uwaterloo.ca/tsp/concorde/index.html

de Koster, R. and van der Poort, E. (1998). Routing orderpickers in a warehouse: a comparison between optimal and heuristic
solutions. IIE Transactions, 30(5), 469–480.

de Koster, R., Le-Duc, T., and Roodbergen, K. J. (2007). Design and control of warehouse order picking: A literature review.
European Journal of Operational Research, 182(2), 481–501.

de Lima, V. L., Iori, M., and Miyazawa, F. K. (2022). Exact solution of network flow models with strong relaxations.
Mathematical Programming. doi: 10.1007/s10107-022-01785-9.

Fischetti, M., Salazar-Gonzalez, J.-J., and Toth, P. (2002). The generalized traveling salesman and orienteering problems.
In G. Gutin and A. Punnen, editors, The Traveling Salesman Problem and Its Variations, volume 12 of Combinatorial
Optimization, chapter 13, pages 609–662. Kluwer, Dordrecht.

Frazelle, E. (2002). World-Class Warehousing and Material Handling. McGraw-Hill, New York.
Glock, C. H. and Grosse, E. H. (2012). Storage policies and order picking strategies in U-shaped order-picking systems with a

movable base. International Journal of Production Research, 50(16), 4344–4357.
Goeke, D. and Schneider, M. (2021). Modeling single-picker routing problems in classical and modern warehouses. INFORMS

Journal on Computing, 33(2), 436–451.
Gu, J., Goetschalckx, M., and McGinnis, L. F. (2007). Research on warehouse operation: A comprehensive review. European

Journal of Operational Research, 177(1), 1–21.
Gue, K. R. and Meller, R. D. (2009). Aisle configurations for unit-load warehouses. IIE Transactions, 41(3), 171–182.
Gutin, G. and Punnen, A., editors (2002). The Traveling Salesman Problem and Its Variations, volume 12 of Combinatorial

Optimization. Kluwer, Dordrecht.
Hall, R. W. (1993). Distance approximations for routing manual pickers in a warehouse. IIE Transactions, 25(4), 76–87.
Henn, S., Koch, S., Gerking, H., and Wäscher, G. (2013). A U-shaped layout for manual order-picking systems. Logistics

Research, 6(4), 245–261.
Heßler, K. and Irnich, S. (2022). A note on the linearity of Ratliff and Rosenthal's algorithm for optimal picker routing.

Operations Research Letters, 50(2), 155–159.
Korbacher, L., Heßler, K., and Irnich, S. (2023). The single picker routing problem with scattered storage: Modeling and

evaluation of routing and storage policies. Technical Report LM-2023-01, Chair of Logistics Management, Gutenberg School
of Management and Economics, Johannes Gutenberg University Mainz, Mainz, Germany. URL https://logistik.bwl.
uni-mainz.de/files/2023/02/LM-2023-01.pdf.

Löffler, M., Boysen, N., and Schneider, M. (2022). Picker routing in AGV-assisted order picking systems. INFORMS Journal
on Computing, 34(1), 440–462.

Masae, M., Glock, C. H., and Vichitkunakorn, P. (2020a). Optimal order picker routing in a conventional warehouse with two
blocks and arbitrary starting and ending points of a tour. International Journal of Production Research, 58(17), 5337–5358.

Masae, M., Glock, C. H., and Grosse, E. H. (2020b). Order picker routing in warehouses: A systematic literature review.
International Journal of Production Economics, 224, 107564.

Menéndez, B., Bustillo, M., Pardo, E. G., and Duarte, A. (2017). General variable neighborhood search for the order batching
and sequencing problem. European Journal of Operational Research, 263(1), 82–93.

Miller, C. E., Tucker, A. W., and Zemlin, R. A. (1960). Integer programming formulations and traveling salesman problems.
Journal of Association for Computing Machinery, 7, 326–329.

Öztürkoğlu, O., Gue, K. R., and Meller, R. D. (2012). Optimal unit-load warehouse designs for single-command operations.
IIE Transactions, 44(6), 459–475.

Pansart, L., Catusse, N., and Cambazard, H. (2018). Exact algorithms for the order picking problem. Computers & Operations
Research, 100, 117–127.

Petersen, C. G. (1997). An evaluation of order picking routeing policies. International Journal of Operations & Production
Management, 17(11), 1098–1111.

Petersen, C. G. and Schmenner, R. W. (1999). An evaluation of routing and volume-based storage policies in an order picking
operation. Decision Sciences, 30(2), 481–501.

Ratliff, H. D. and Rosenthal, A. S. (1983). Order-picking in a rectangular warehouse: A solvable case of the traveling salesman
problem. Operations Research, 31(3), 507–521.

Roodbergen, K. J. and de Koster, R. (2001a). Routing methods for warehouses with multiple cross aisles. International Journal
of Production Research, 39(9), 1865–1883.

Roodbergen, K. J. and de Koster, R. (2001b). Routing order pickers in a warehouse with a middle aisle. European Journal of
Operational Research, 133(1), 32–43.

Roodbergen, K. J. and Koster, R. (2001). Routing methods for warehouses with multiple cross aisles. International Journal
of Production Research, 39(9), 1865–1883.

Santini, A. (2022). Fork of the concorde TSP solver with an easier build procedure. GitHub. https://github.com/
alberto-santini/concorde-easy-build.

Su, Y., Zhu, X., Yuan, J., Teo, K. L., Li, M., and Li, C. (2023). An extensible multi-block layout warehouse routing optimization
model. European Journal of Operational Research, 305(1), 222–239.

Tarjan, R. E. (1975). Efficiency of a good but not linear set union algorithm. Journal of the ACM, 22(2), 215–225.
Theys, C., Bräysy, O., Dullaert, W., and Raa, B. (2010). Using a TSP heuristic for routing order pickers in warehouses.

European Journal of Operational Research, 200(3), 755–763.
Tompkins, J., White, J., Bozer, Y., and Frazelle, E.H.and Tanchoco, J. (2003). Facilities Planning. John Wiley & Sons,

Hoboken, NJ.
van Gils, T., Ramaekers, K., Caris, A., and de Koster, R. B. (2018). Designing efficient order picking systems by combining

planning problems: State-of-the-art classification and review. European Journal of Operational Research, 267(1), 1–15.

17

https://logistik.bwl.uni-mainz.de/files/2023/02/LM-2023-01.pdf
https://logistik.bwl.uni-mainz.de/files/2023/02/LM-2023-01.pdf
https://github.com/alberto-santini/concorde-easy-build
https://github.com/alberto-santini/concorde-easy-build

Wahlen, J. and Gschwind, T. (2022). Branch-price-and-cut-based solution of order batching problems. Transportation Science.
Forthcoming. Available as Technical Report L-2022-01, RPTU, Germany, https://logistik.wiwi.uni-kl.de/fileadmin/
logistik.wiwi.uni-kl.de/publikationen/Artikel/L-2022-01.pdf.

Weidinger, F. (2018). Picker routing in rectangular mixed shelves warehouses. Computers & Operations Research, 95, 139–150.
Weidinger, F., Boysen, N., and Schneider, M. (2019). Picker routing in the mixed-shelves warehouses of e-commerce retailers.

European Journal of Operational Research, 274(2), 501–515.
Ömer Öztürkoğlu and Hoser, D. (2019). A discrete cross aisle design model for order-picking warehouses. European Journal of

Operational Research, 275(2), 411–430.

18

https://logistik.wiwi.uni-kl.de/fileadmin/logistik.wiwi.uni-kl.de/publikationen/Artikel/L-2022-01.pdf
https://logistik.wiwi.uni-kl.de/fileadmin/logistik.wiwi.uni-kl.de/publikationen/Artikel/L-2022-01.pdf

Appendix

A. Instance Generation Procedure for SPRP-SS Instances

First, the generation procedure described by Weidinger and Goeke and Schneider completely fills the
warehouse with articles. The assumption is that one article is stored in each of the m · C possible pick
positions. In particular, opposite cells in an aisle are considered as one pick position. The scatter factor α
can be realized by defining a set of ξ = dmC/αe ≥ n different articles stored in the warehouse (not all of
them are in the final pick list). To ensure that exactly ξ different articles are available, each of them is
randomly assigned to a unique pick position.

Second, all ξ different articles are divided into the three classes A, B, and C (in practice depending on
the turnover rate) with 20% in class A, 30% in class B, and 50% in class C. The ABC class-based addition
of further SKUs must now ensure that (on average) 80% of the positions are stocked with A-class articles,
15% with B-class articles, and 5% with C-class articles. One by one, articles are assigned to positions as
follows: According to the 80-15-5 distribution, a class is chosen. Then, a random article of that class is
selected. Finally, this article is assigned randomly to one of the (up to this point) free storage positions in
the warehouse.

Third, supply values are then determined with a further distinction between instances with
• a sufficient number of items or unit demand : Here, the demand and supply values are set to qs =
bsp = 1 for all s ∈ S and p ∈ Ps;

• general supply and demand : Here, the supply available at a position is randomly drawn as bsp ∈
{1, 2, 3}. Moreover, demands are randomly drawn as qs ∈ {1, . . . ,min(6,

∑
p bsp)}.

Finally, the pick list is generated so that it contains exactly n different articles. Iteratively, a pick position
is randomly drawn. If the SKU at this position is not yet an article in the pick list, this article s is chosen
to be included in the pick list.

19

B. Results for SPRP-SS Instances with General Supply and Demand

For the sake of brevity, Tables 7 and 8 have been moved to the Appendix. The former is structurally
identical to Table 2 but for general supply and demand. The latter reports average computation times for
the NF model, again for general supply and demand.

Table 7: Comparison of NF and GS with computation times (in milliseconds) and speedup factor comparing
GS and NF for the SPRP-SS, a single-block parallel-aisle warehouse, and general supply and demand.

Scatter Warehouse Number of SKUs in pick list
factor dimension n = 3 n = 7 n = 15 n = 30

(m,C) tNF
tGS
tNF

tNF
tGS
tNF

tNF
tGS
tNF

tNF
tGS
tNF

α = 2 (5, 30) 46.8 4.5 67.0 2.0 87.9 1.1 107.9 0.9
(5, 60) 47.4 5.1 56.1 2.7 99.0 1.2 127.2 0.9
(5, 180) 59.4 6.6 71.8 2.3 106.7 1.0 167.1 0.8
(10, 30) 70.8 5.4 92.7 2.3 189.7 1.4 231.5 1.0
(10, 60) 56.7 9.6 78.9 2.9 159.4 1.6 309.2 0.9
(10, 180) 71.4 6.9 87.8 2.7 147.4 1.3 344.5 0.8
(25, 30) 78.6 5.3 122.6 3.4 296.5 2.0 712.3 1.4
(25, 60) 87.1 8.6 134.1 3.9 268.7 2.1 589.2 1.3
(25, 180) 111.7 8.8 113.4 6.2 300.0 2.1 643.4 1.5
(50, 30) 162.9 4.6 226.6 5.8 415.8 3.1 847.3 1.9
(50, 60) 146.6 7.2 228.4 7.1 387.1 3.3 895.1 2.2
(50, 180) 199.1 16.1 214.5 12.5 416.0 4.5 931.3 2.5

α = 5 (10, 30) 226.4 3.4 505.8 1.5 794.4 0.8 1021.3 0.6
(10, 60) 173.6 4.8 448.6 2.4 859.4 1.0 2183.4 0.5
(10, 180) 134.0 5.5 396.8 3.0 1070.6 1.1 2980.6 0.5
(25, 30) 558.2 4.5 1190.9 2.8 1913.9 1.1 4141.6 0.6
(25, 60) 552.2 4.7 1229.1 2.7 2210.2 1.4 4174.6 0.6
(25, 180) 439.6 7.7 912.3 4.5 1372.5 1.8 4862.5 0.7
(50, 30) 667.3 4.2 1186.1 2.9 1369.5 2.8 4398.7 1.3
(50, 60) 887.7 6.3 1021.8 5.1 1865.1 3.4 5889.4 1.3
(50, 180) 461.9 8.6 964.9 9.3 1755.8 4.4 5620.5 1.6

α = 10 (25, 30) 2022.4 4.0 3635.7 1.5 6265.0 0.7 8669.6 0.6
(25, 60) 1657.2 3.2 6333.0 1.7 9376.2 0.9 10 845.0 0.6
(25, 180) 914.0 5.2 3534.5 2.5 9228.1 1.5 13 239.4 0.8
(50, 30) 3643.5 1.4 3959.6 2.3 10 193.5 1.1 17 616.0 0.8
(50, 60) 2307.5 3.5 3425.4 3.3 9315.7 1.3 17 902.1 0.9
(50, 180) 1599.1 4.8 4260.0 6.1 11 015.0 2.7 20 612.2 1.7

20

Table 8: Computation times (in milliseconds) of NF for the SPRP-SS, two-block parallel-aisle warehouse,
and general supply and demand.

Scatter Warehouse Number of articles in pick list
factor dimension n = 3 n = 7 n = 15 n = 30

(m,C) tNF tNF tNF tNF

α = 2 (5, 30) 21.6 44.9 78.3 119.1
(5, 60) 24.7 46.4 103.7 177.6
(5, 180) 34.3 64.8 105.1 258.9
(10, 30) 52.3 81.0 173.4 276.3
(10, 60) 55.4 86.8 163.8 408.9
(10, 180) 75.6 85.0 128.4 385.8
(25, 30) 82.1 135.5 278.5 678.4
(25, 60) 63.9 119.9 285.5 680.0
(25, 180) 72.5 144.7 322.8 722.1
(50, 30) 156.3 579.3 453.4 945.6
(50, 60) 110.7 299.2 419.2 1269.0
(50, 180) 211.6 215.2 480.0 2295.1

α = 5 (10, 30) 537.5 1147.4 1453.7 2237.4
(10, 60) 836.2 1448.4 1882.0 4056.2
(10, 180) 891.9 1383.6 3353.7 6011.4
(25, 30) 1697.3 3076.7 4161.3 6685.3
(25, 60) 1871.9 4331.6 4074.5 8855.6
(25, 180) 2336.7 2144.2 4066.7 12 807.7
(50, 30) 8172.5 6566.0 9222.6 24 512.2
(50, 60) 3376.1 4007.4 12 136.5 60 624.2
(50, 180) 3350.2 7916.7 28 560.3 77 918.1

α = 10 (25, 30) 8774.1 9433.0 12 728.5 25 128.6
(25, 60) 12 120.0 28 881.6 28 692.2 32 253.0
(25, 180) 11 025.8 25 136.3 33 230.2 32 516.8
(50, 30) 15 735.8 56 414.1 179 451.1 110 293.4
(50, 60) 25 184.1 57 259.9 78 620.4 437 665.8
(50, 180) 18 090.0 39 523.2 147 424.7 350 290.7

21

C. Dynamic-Programming State Space for Two-block Parallel-Aisle Warehouse Layout

The dynamic program of Roodbergen and de Koster (2001b) solving the SPRP for two-block parallel-
aisle warehouse has 3m+1 stages. For each aisle j ∈ J = {1, 2, . . . ,m}, the stage j− describes a PTS before
aisle j is traversed, the stage j+x when the back (‘x’) block in aisle j is traversed, and the stage j+y when
the front (‘y’) block in aisle j is traversed. An artificial stage (m+ 1)− is added as in the one-block case.

The states of the DP describe vertex degrees and the connectivity of the PTS. Since there are three
crossing points per aisle now (in the back cross-aisle, middle cross-aisle, front cross-aisle), the vertices aj , bj ,
and cj are introduced for this purpose. As a result, there are 25 states relevant to construct an optimal
picker tour:

S = {0000c, 0001c, E001c, 0E01c, 00E1c, EE01c, E0E1c, 0EE1c, EEE1c, UU01c, U0U1c, 0UU1c, EUU1c,
UEU1c, UUE1c, EE02c, E0E2c, 0EE2c, EEE2c.a-bc, EEE2c.b-ac, EEE2c.c-ab, EUU2c, UEU2c, UUE2c, EEE3c}

(the first three symbols again describe vertex degrees for the back/middle/front cross aisle). The connectivity
information is more detailed compared to the DP of Ratliff and Rosenthal: there can be one (1c), two (2c),
or three (3c) connected components. Moreover, if all three vertices aj , bj , and cj are even (EEE), two
connected components can result from having middle and front cross-aisle connected (a-bc), back and front
cross-aisle connected (b-ac), or back and middle cross-aisle connected (c-ab).

3 6

2 5

1

4

b2

c2

b3

c3

back:

front:

Block x:

Block y:

Figure 3: Instance of the SPRP for a 2-block parallel-aisle warehouse. The pick list contains six SKUs S =
{1, 2, 3, 4, 5, 6} (unit demand); pick operations are encircled.

An instance of the SPRP for a 2-block parallel-aisle warehouse and the optimal picker tour are depicted
in Figure 3. The associated state space is shown in Figure 4. Moreover, the highlighted o-d-path from
state 0000c at stage 1− to state 0001c at stage 4− (drawn in red/thick) describes the optimal picker tour.

22

o

d

States: ↓

0000c

0001c

E001c

0E01c

00E1c

EE01c

E0E1c

0EE1c

EEE1c

UU01c

U0U1c

0UU1c

EUU1c

UEU1c

UUE1c

EE02c

E0E2c

0EE2c

EEE2c.a-bc

EEE2c.b-ac

EEE2c.c-ab

EUU2c

UEU2c

UUE2c

EEE3c

Stages: → 1− 1+y 1+x 2− 2+y 2+x 3− 3+y 3+x 4−

void void 000

void 000

void 200
000

void 020

00
0

void 002

00
0

void

20
0

02
0

220

00
0

void

20
0

00
2

202

00
0

void

02
0

00
2

220

022

00
0

void

20
0

02
0

00
2

22
0

20
2

022

222

00
0

void 110

void 101

void 011

void
011

211

void

10
1

121

void

11
0

112

void 220

void 202

void 022

void

22
0

20
2

222

void

22
0

02
2

222

void

20
2

02
2

222

void 211

void 121

void 112

void 222

1
p
a
ss

top

bottom
2p

ass

void 000

void 000

1
p
a
ss

to
pb

o
tto

m
2
p
a
ss

void 200
000

1p
ass

top

b
o
tto

m
2pass

void 020

00
0

1p
ass

to
p

bottom

2pass

void 002

00
0

1p
ass

top

b
o
tto

m

2pass

void

20
0

02
0

220

00
0

1p
ass

to
p

bottom

2pass

void

20
0

00
2

202

00
0

1pass

top
bottom void

02
0

00
2

220

022

00
0

1pass

top
bottom void

20
0

02
0

00
2

22
0

20
2

022

222

00
0

1pass

top

b
o
tto

m
2p

ass

void 110

1pass
to

p

bottom

2pass

void 101

1p
as

s

top
bottom void 011

1p
as

s

top
bottom void

011

211

1pass
top

bottom void

10
1

121

1pass

top
bottom void

11
0

112

1p
ass

top

b
o
tto

m

2pass

void 220

1p
ass

top

bottom

2pass

void 202

1p
as

s

top
bottom

2
p
a
ss

void 022

1pass

top
bottom void

22
0

20
2

222

1p
as

s

top
bottom

2
p
a
ss

void

22
0

02
2

222

1p
as

s

top
bottom

2
p
a
ss

void

20
2

02
2

222

1p
as
s

top
bottom void 211

1p
as

s

top
bottom

2
p
a
ss

void 121

1
p
a
ss

top
bottom

2
p
a
ss

void 112

1p
as
s

top
bottom

2p
as

s

void 222

1
p
a
ss

top

bottom
2p

ass

1
p
a
ss

top

bottom

2
g
a
p

2p
ass

1
p
a
ss

to
pb

o
tto

m
2
p
a
ss

1p
ass

top

b
o
tto

m

2
g
a
p

2pass

1p
ass

top

b
o
tto

m
2pass

1p
ass

to
p

bottom

2
g
a
p

2pass

1p
ass

to
p

bottom

2pass

1
p
a
ss

to
pb

o
tto

m
2
g
a
p

2
p
a
ss

00
0

1p
ass

top

b
o
tto

m

2pass

1pass

top
bottom
2gap

1p
ass

to
p

bottom

2pass

1p
ass

top

b
o
tto

m

2
g
a
p

2pass

00
0

1pass

top
bottom

1p
ass

to
p

bottom

2
g
a
p

2pass

00
0

1pass

top
bottom

1p
ass

top
bottom
2gap

00
0

1pass

top

b
o
tto

m
2p

ass

1p
as

s

top
bottom
2gap

1pass
to

p

bottom

2pass

1pass

top

b
o
tto

m

2
g
a
p

2pass

1p
as

s

top
bottom

1pass

to
p

bottom

2
g
a
p

2pass

1p
as

s
top

bottom

1pass
top

bottom
2gap

1pass
top

bottom
1pass

top
bottom
2gap

1pass

top
bottom

1p
as

s

top
bottom
2gap

1p
ass

top

b
o
tto

m

2pass

1p
as

s
top

bottom
2gap

2
p
a
ss

1p
ass

top

bottom

2pass

1p
ass

top

b
ottom

2gap

2pass

1p
as

s

top
bottom

2
p
a
ss

1p
ass

top

bottom

2gap

2pass

1pass

top
bottom

1p
as

s

top
bottom
2gap

2
p
a
ss

1p
as

s

top
bottom

2
p
a
ss

1p
as

s

top
bottom
2gap

2
p
a
ss

1p
as

s

top
bottom

2
p
a
ss

1pass

top
bottom
2gap1p

as
s

top
bottom

1p
as

s

top
bottom
2gap

2
p
a
ss

1p
as

s

top
bottom

2
p
a
ss

1
p
a
ss

top
bottom
2gap

2
p
a
ss

1
p
a
ss

top
bottom

2
p
a
ss

1p
as
s

top
bottom
2gap1p

as
s

top
bottom

2p
as

s

1pass

top
bottom
2gap

2p
as

s

Figure 4: State space (V,E) of the dynamic program for a 2-block parallel-aisle warehouse and optimal
sequence of states and actions (in red/thick).

23

D. GTSP Formulation and Branch-and-Cut Algorithm

For describing the GTSP formulation and branch-and-cut algorithm of Fischetti et al. (2002), we make
the following assumptions. An instance of the GTSP is given by an undirected graph (V,E) with vertex
set V and edge set E. The vertices V are partitioned into m clusters C1, C2, . . . , Cm, i.e., V =

⋃
h∈H Ch and

Ch ∩ Ch′ = ∅ for all h, h′ ∈ H = {1, 2, . . . ,m} with h 6= h′. Let h(i) ∈ H be the index of the cluster that
contains i ∈ V , i.e., i ∈ Ch(i). Edges e = {i, j} ∈ e exist between every two i and j vertices with h(i) 6= h(j).
The cost of edge e = {i, j} ∈ E is given by an integer number ce = cij = cji. The GTSP is the problem of
finding a cycle T ⊂ E of minimal length

∑
e∈T ce such that T goes through every cluster at least once.

For S ⊆ V , the following sets and number are defined:

E(S) = {{i, j} ∈ E : i, j ∈ S}
δ(S) = {{i, j} ∈ E : i ∈ S, j /∈ S or i /∈ S, j ∈ S}
µ(S) = |{h ∈ H : Ch ⊆ S}|

For i ∈ V , we write δ(i) as a shorthand notation for δ({i}).
Two types of decision variables are present in the GTSP formulation of Fischetti et al.: Binary variables xe

indicate whether edge e ∈ E is present in the selected cycle and binary variables yi indicate whether
vertex i ∈ V is included in the selected cycle. The binary formulation reads as follows:

zGTSP =
∑
e∈E

ce (4a)

subject to
∑
e∈δ(i)

xe − 2yi = 0 ∀i ∈ V (4b)

∑
i∈Ch

yi ≥ 1 ∀h ∈ H (4c)

∑
e∈δ(S)

xe − 2yi − 2yj ≥ −2 ∀S ⊂ V, 2 ≤ |S| ≤ |V | − 2, i ∈ S, j ∈ V \ S (GSEC)

xe ∈ {0, 1} ∀e ∈ E (4d)
yi ∈ {0, 1} ∀i ∈ V (4e)

The objective (4a) is to minimize the length of the cycle. Constraints (4b) couple the x- and y-variables
guaranteeing that a selected vertex has degree two. Constraints (4c) ensure that at least one vertex per
cluster is visited. The generalized subtour elimination constraints (GSEC) forbid subtours over the selected
vertices. Last, the domain of the variables is specified in (4d) and (4e).

There exist strengthened versions of the GSEC when complete clusters are included in S or its comple-
ment: ∑

e∈δ(S)

xe − 2yi ≥ 0 ∀S ⊂ V, 2 ≤ |S| ≤ |V | − 2, i ∈ S, µ(V \ S) > 0 (GSEC’)

∑
e∈δ(S)

xe ≥ 2 ∀S ⊂ V, 2 ≤ |S| ≤ |V | − 2, µ(S) > 0, µ(V \ S) > 0 (GSEC”)

Our re-implementation of the branch-and-cut algorithm described by Fischetti et al. uses the lazy and
user callback functions of the C++ API of CPLEX.

• A method like GSEC-BUILD (Fischetti et al., 2002, p. 382) is used to find, for a given subset S, a
most violated facet-defining inequality of type (GSEC), (GSEC’), or (GSEC”). The given set S is
(heuristically) modified into S′ in order to arrive at µ(S′) > 0 and/or µ(V \ S′) > 0 and to select
better vertices i (and j).

• Integer solutions (x∗, y∗) (in the lazy cut callback) are inspected using a union-find algorithm (Tarjan,
1975) to very quickly identify subsets S.

24

• For the separation of the strongest inequalities (GSEC”), we only rely on GSEC-BUILD and do not use
a dedicated method like GSEC-H1, since we did not see a computational advantage in pre-tests.

• For fractional solutions (x∗, y∗), a spanning tree-based method like GSEC-H2 (Fischetti et al., 2002,
p. 382) is used as a fast heuristic separation procedure.

• Moreover, a method like GSEC-SEP (Fischetti et al., 2002, p. 382) is used (Fischetti et al., 2002, p. 383)
for exact GSEC separation (to be precise, exact only if maxi∈V y

∗
i = 1, which is very often fulfilled).

• The overall strategy for calling the above heuristic and exact separation procedures follows a similar
logic as described by Fischetti et al. However, we use a simplified management of selecting a subset
of violated GSECs compared to the method SEPARATION (Fischetti et al., 2002, p. 386) (no loops
with different minimum thresholds for violation), since the recent versions of CPLEX are excellent in
handling cut pools itself.

25

	Introduction
	Contributions
	Structure

	Single Picker Routing Problems
	The State Space of RatliffRosenthal1983's Dynamic Program
	Scattered Storage
	Extended State Space for Scattered Storage
	Network-Flow Formulation
	Possible Extensions of the Modelling and Solution Approach

	Computational Results
	Details of the Implementation
	Benchmark Instances
	Computational Results for the Single-Block Parallel-Aisle Warehouse Layout
	Computational Results for the Two-Block Parallel-Aisle Warehouse Layout
	Cost Comparison Between Single-Block and Two-Block Parallel-Aisle Warehouse Layouts

	Conclusions and Outlook
	Instance Generation Procedure for SPRP-SS Instances
	Results for SPRP-SS Instances with General Supply and Demand
	Dynamic-Programming State Space for Two-block Parallel-Aisle Warehouse Layout
	GTSP Formulation and Branch-and-Cut Algorithm

