
Subset-Row Inequalities and Unreachability in Path-based Formulations for
Routing and Scheduling Problems

Stefan Falduma, Timo Gschwindb, Stefan Irnicha,∗

aChair of Logistics Management, Gutenberg School of Management and Economics, Johannes Gutenberg University Mainz,
Jakob-Welder-Weg 9, D-55128 Mainz, Germany.

bChair of Logistics, Faculty of Business Studies and Economics, RPTU Kaiserslautern-Landau, Gottlieb-Daimler-Straße,
Geb. 42, D-67663 Kaiserslautern, Germany.

Abstract

This work considers branch-price-and-cut algorithms for variants of the vehicle-routing problem in which
subset-row inequalities (SRIs) are used to strengthen the linear relaxation. SRIs often help to substantially
reduce the size of the branch-and-bound search tree. However, their use is computationally costly because
they modify the structure of the respective column-generation subproblem which is a shortest-path problem
with resource constraints (SPPRC). Each active SRI requires the addition of a resource to the labeling algo-
rithm that is invoked for solving the SPPRC in every iteration. In the context of time-window constraints,
the concept of unreachable customers has been used for preprocessing (time-window reduction, arc elimi-
nation, precedence identification) as well as for improving the dominance between labels in the elementary
SPPRC and its relaxations. We show that the identification of unreachable customers can also help to
improve the dominance due to a modified comparison of SRI-related resources. Computational experiments
with a fully-fledged branch-price-and-cut algorithm for the (standard and electric) vehicle routing problem
with time windows demonstrates the effectiveness of the approach: Overall computation times decrease,
for some difficult instances they may even be cut in half, while the required modifications of a computer
implementation for combining SRIs with unreachable customers is minor.

Keywords: Routing, subset-row inequalities, labeling algorithm, unreachability, branch-price-and-cut

1. Introduction

One of the great success stories of branch-price-and-cut (BPC) algorithms for the exact solution of
vehicle-routing problems (VRPs, Toth and Vigo, 2014) has been the invention of non-robust cutting planes
starting with the work of Jepsen et al. (2008) introducing subset-row inequalities (SRIs). A BPC algorithm
is, according to Costa et al. (2019), “a branch-and-bound algorithm where the lower bounds are computed
by column generation and the cutting planes are added to strengthen the linear relaxations encountered in
the search tree.” The column-generation procedure iteratively solves a restricted master program (RMP),
which is the linear relaxation of a route-based formulation over a restricted subset of all potential routes,
and a pricing subproblem, which is in almost all VRP applications a shortest-path problem with resource
constraints (SPPRC, Irnich and Desaulniers, 2005). The task of the SPPRC is to generate negative-reduced
cost routes (if any). A dynamic-programming labeling algorithm is typically used for this purpose.

During the last two decades, research on SPPRC labeling algorithms has been intense, which can be
explained by the fact that the largest share of the overall BPC solution time is typically consumed by the
labeling algorithm. Several powerful algorithmic components have been invented to accelerate labeling. To

∗Corresponding author.
Email addresses: stfaldum@uni-mainz.de (Stefan Faldum), gschwind@rptu.de (Timo Gschwind), irnich@uni-mainz.de

(Stefan Irnich)

Technical Report LM-2023-04 July 12, 2023

name a few milestones, the concept of unreachable customers improved dominance in elementary SPPRCs
(ESPPRCs, Feillet et al., 2004), relaxations of elementarity have led to well-solvable SPPRC relaxations
(Irnich and Villeneuve, 2006; Desaulniers et al., 2008; Baldacci et al., 2011, 2012; Bode and Irnich, 2014),
and important acceleration techniques include decremental state space relaxation (Boland et al., 2006;
Righini and Salani, 2008), bidirectional labeling (Righini and Salani, 2006; Tilk et al., 2017), label bucketing
(Sadykov et al., 2021), and arc fixing (Irnich et al., 2010; Desaulniers et al., 2020; Bianchessi et al., 2022).
The above-mentioned SRIs have such a high impact on BPC performance because they often significantly
strengthen the master-program formulations so that they provide very tight dual bounds. At the same time,
the SRI-related dominance rule proposed by Jepsen et al. (2008) still allows an effective solution of SPPRC
subproblems. Note that the subproblems have to be extended by one additional resource per active non-
robust cut. This resource has to be properly considered in the reduced-cost computation and dominance
procedure. Work on non-robust cuts has been expanded in two directions, where one stream of works
considers easier to solve relaxations using a limited memory (Pecin et al., 2017a,c), and the second stream
of works invented labeling algorithms integrating alternative non-robust cuts such as clique inequalities
(Spoorendonk and Desaulniers, 2010), non-robust strengthened capacity and k-path cuts (Baldacci et al.,
2008), and subset-row cuts for set-covering formulations (Balster et al., 2022).

In this paper, we introduce an improved dominance rule for SPPRCs that rely on SRIs. To this end,
we reconsider the concept of unreachable customers, which has been used for preprocessing (time-window
reduction, arc elimination, precedence identification) in the context of time-window constraints (Desrochers
et al., 1992) as well as for strengthening the dominance in elementary SPPRCs and their relaxations (Feillet
et al., 2004). We show that for an SRI defined by a subset S, dominance comparisons between two labels
can ignore the SRI-related resource as soon as the potentially weaker label represents a path that cannot
feasibly fulfill further tasks of S. As a result, the stronger label does not need to be penalized with the
respective dual price making the dominance comparison stronger. This leads to a smaller number of labels
to be considered, reduced pricing times, and finally faster BPC algorithms. In a computational study on
the vehicle routing problem with time windows (VRPTW, Desaulniers et al., 2014) and the electric VRPTW
(EVRPTW, Desaulniers et al., 2016), we quantify the resulting speedups. As one would expect, the speedup
typically increases with the number of SRIs that are added and active as well as with the size of the branch-
and-bound search tree. The well-known Solomon benchmark instances serve for the experiments.

The improved dominance rule is part of the regular pairwise dominance comparison performed very
often in the course of the BPC algorithm. Therefore, it has to be ensured that the new improved dominance
runs seamlessly without significantly slowing down dominance. We elaborate the computation of auxiliary
information during each label extension step that helps to mitigate the additional effort needed in the
improved dominance comparison.

The remainder of this work is structured as follows: Section 2 presents the theoretical background of
SPPRC labeling including a generic formulation of standard as well as limited-memory based SRIs, gen-
eral dominance principles, and an analysis which type of dominance is compatible with which type of
SRIs. The improved dominance is introduced in Sections 3 and possibilities to define and identify unreach-
able vertices in Section 4. In Section 5, computational results compare two fully-fledged BPC algorithms
where one is equipped with the stronger dominance and the other one with the standard dominance in the
dynamic-programming labeling algorithm solving the SPPRC pricing subproblem. The paper closes with
final conclusions given in Section 6.

2. Subset-Row Inequalities in Labeling Algorithms

We start with the description of an extensive formulation in the sense of (Desaulniers et al., 2005;
Lübbecke and Desrosiers, 2005). Let M represent a set of tasks to be performed, e.g., the set of customers
to be visited in the capacitated VRP and VRPTW variants, the set of pickup-and-delivery requests in VRPs
concerned with point-to-point transportation, or the set of arcs to be serviced in arc-routing problems etc.
Moreover, let Ω denote the set of all feasible routes. The relationship between tasks and routes is given by
the non-negative integer coefficients air for i ∈ M and r ∈ Ω describing how often the route r performs

2

task i. Let cr ∈ R denote the cost of route r ∈ Ω. The extensive formulation has one variable λr for each
r ∈ Ω indicating how often route r is selected in the solution:

z = min
∑
r∈Ω

crλr (1a)

subject to
∑
r∈Ω

airλr = 1 ∀i ∈ M (1b)

λr ≥ 0 integer ∀r ∈ Ω (1c)

The objective (1a) minimizes the total cost of all selected routes. Constraints (1b) ensure that all tasks
are performed once by exactly one route. Note that in relaxed formulations routes may perform the same
service more than once (air > 0), but these routes r can never be part of an feasible integer solution due to
the integrality constraints (1c). Besides the set-partitioning constraints (1b), many models contain further
constraints of the form Bλ ≥ d, where B is the arc-route incidence matrix of the digraph D = (V,A)
over which the routing problem is defined. Examples are fleet-size constraints, balancing constraints, and
service-level constraints. We do not need to explicitly consider these constraints because they are robust,
i.e., their presence does not change the structure of the SPPRC subproblem that we describe below. They
only modify the reduced costs of the arcs.

When used in column generation, the linear relaxation of formulation (1) is restricted to a small proper
subset Ω′ ⊂ Ω. The resulting linear model over the variables λr ≥ 0 for r ∈ Ω′ is known as RMP. The pricing
subproblem receives a dual solution π = (πi)i∈M of the RMP and must determine at least one route r with
negative reduced cost c̃r = cr −

∑
i∈M airπi, if one exists. The column-generation process is then repeated

with a new subset Ω′ to which at least one negative reduced-cost route has been added. Column generation
terminates when all routes have non-negative reduced cost. The primal solution λ̄ of the respective RMP is
then the solution to the linear relaxation of formulation (1).

In general, the lower bound LB = c⊤λ̄ provided by the linear relaxation is strictly smaller than z. It
such a situation, strengthening the linear relaxation with valid inequalities can help to reduce the size of the
branch-and-bound tree. Subset-row inequalities are rank-1 Gomory cuts for models containing set-packing
constraints

∑
r∈Ω airλr ≤ 1 for i ∈ M , as fulfilled for set-partitioning models of type (1). An SRI is defined

by a subset S of the rows M and non-negative rational weights w = (wi)i∈S :

∑
r∈Ω

⌊∑
i∈S

wiair

⌋
λr ≤

⌊∑
i∈S

wi

⌋
.

An SRI defined for (S,w) can be written more shortly by defining the coefficients ar(S,w) =
⌊∑

i∈S wiair
⌋

and the right-hand side (RHS) b(S,w) =
⌊∑

i∈S wi

⌋
:∑

r∈Ω

ar(S,w)λr ≤ b(S,w) (2)

In practice, the subsets S that are used to strengthen the RMP are small. Table 1 lists weights that lead to
undominated SRIs for subsets S with cardinality between three and five (see Pecin et al., 2017b).

Example 1. For a subset S = {i1, i2, i3} with |S| = 3 elements, the associated SRI uses weights wi = 1/2
for i ∈ S. The SRI enforces that there is not more than one route r ∈ Ω in every feasible solution that serves
two or more requests from S. Indeed, with the definition a(S,w) = ⌊

∑
i∈S air/2⌋ the inequality is∑

r∈Ω:
2≤

∑
i∈S air≤3

λr + 2 ·
∑
r∈Ω:

4≤
∑

i∈S air≤5

λr + 3 ·
∑
r∈Ω:

6≤
∑

i∈S air≤7

λr + . . . ≤ 1.

The first summand means that not more than one route performing more than one task of S can be part of an
integer solution. The additional summands can only contribute with values greater than 1 if non-elementary
routes are considered.

3

Size |S| Weights w = (wi)i∈S RHS b(S,w)

3 (12 ,
1
2 ,

1
2) 1

4 (23 ,
1
3 ,

1
3 ,

1
3) 1

5 (13 ,
1
3 ,

1
3 ,

1
3 ,

1
3), (

2
4 ,

2
4 ,

1
4 ,

1
4 ,

1
4), (

3
4 ,

1
4 ,

1
4 ,

1
4 ,

1
4), (

3
5 ,

2
5 ,

2
5 ,

1
5 ,

1
5), 1

(12 ,
1
2 ,

1
2 ,

1
2 ,

1
2), (

2
3 ,

2
3 ,

2
3 ,

1
3 ,

1
3), (

3
4 ,

3
4 ,

2
4 ,

2
4 ,

1
4) 2

Table 1: Undominated combinations of weights for subset-row inequalities with 3 ≤ |S| ≤ 5.

2.1. SPPRC and Labeling
Jepsen et al. (2008) have introduced SRIs for SPPRC pricing subproblems. Recall that D = (V,A)

denotes the digraph over which the SPPRC is defined. We assume w.l.o.g. that each feasible route starts
at the given origin vertex o ∈ V and ends at the destination vertex o′ ∈ V . Moreover, let R denote the
set of attributes (a.k.a. resources) that define the SPPRC. Examples of attributes are the earliest service
time, the accumulated demand, the traveled distance etc (further modeling examples are provided in Irnich
and Desaulniers, 2005). Also binary attributes related to ng-route relaxation (Baldacci et al., 2011) are to
be included if this type of SPPRC relaxation is used. In addition, we assume that one attribute rdc ∈ R
represents the accumulated reduced cost. At this point, we explicitly exclude attributes that are introduced
to handle the impact of SRIs. This exclusion enables us to later distinguish between subproblems that
disregard SRIs and subproblems that consider SRIs.

The prevalent solution approach for SPPRCs is by dynamic-programming labeling algorithms. Starting
from the origin vertex o associated with the trivial path p = (o), o-i-paths (a.k.a. partial paths) are system-
atically extended in a vertex-by-vertex fashion towards the destination vertex o′. More precisely, a partial
path p = (o, . . . , i) ending at vertex i is extended over all outgoing arcs (i, j) ∈ A of i producing a new
partial path p = (o, . . . , i, j), which is immediately checked for feasibility and dismissed if infeasible.

We further assume that T = (T res)res∈R denotes a problem-specific vector of attributes. Resource
extension functions (REFs, Desaulniers et al., 1998; Irnich, 2007) are used to propagate the attributes
through the network. Let fij denote the REF associated with arc (i, j) ∈ A. The REF fij propagates
an arbitrary vector T of attributes referring to a vertex i to resulting attributes T′ for the vertex j via
T′ = fij(T). For convenience, we assume that infeasibility is indicated via f rdc

ij (T) = ∞. Moreover, we do
not consider parallel arcs and multiple REFs per arc to keep the notation simple (even though this extension
bears no conceptual difficulty, see Desaulniers, 2010; Goel and Irnich, 2017). Let T0 denote the initial values
of the attributes associated with the origin o. For any path r = (i0, i1, . . . , iℓ), we recursively define

Tk = fik−1ik(Tk−1) for all k = 1, 2, . . . , ℓ.

For convenience, we define T(r) as the attribute vector at the last vertex iℓ, i.e., T(r) = Tℓ. The path r is
feasible if and only if T(r)rdc = T rdc

ℓ < ∞ (assuming ∞+ a = ∞ for any real value a ∈ R).

Example 2. The VRPTW is defined by a demand di and a time window [ei, ℓi] for all vertices i ∈ V together
with a routing cost cij and a travel and service time tij for all arcs (i, j) ∈ A as well as a vehicle capacity Q
(for details we refer to, e.g., Desaulniers et al., 2014). Attributes for the following resources are relevant:
reduced cost, load, earliest service time, and ng-related binary attributes. The latter ng-route relaxation is
defined by neighborhoods (Nj)j∈V with j ∈ Nj ⊆ V . The initial attributes at the origin vertex o are given
by To = (0, 0, eo,0). The propagation of attributes T from a vertex i along an outgoing arc (i, j) ∈ A to the

4

vertex j gives the new attributes T′ = fij(T), where the REF is componentwise defined as:

T ′rdc = f rdc
ij (T) = T rdc + c̃ij (3a)

T ′load = f load
ij (T) = T load + di (3b)

T ′time = f time
ij (T) = max{ej , T time + tij} (3c)

T ′ng,v = fng,v
ij (T) =

 Tng,v + 1, if v = j
Tng,v, if v ∈ Nj , v ̸= j
0, otherwise

∀v ∈ V (3d)

The extension is feasible if T ′time ≤ ℓj, T ′load ≤ Q, and T ′ng,v ≤ 1 for all v ∈ V . Otherwise, we set
T ′rdc = ∞ (not formalized in (3a) for the sake of simplicity).

The reduced costs c̃ij on the arcs (i, j) ∈ A in (3a) result from dual prices π of task fulfillment con-
straints (1b) (and possibly other robust constraints, e.g., limiting the fleet size) to be consistently subtracted
from the original arc costs cij.

What we have described so far is the path/label extension part of a labeling algorithm. Repeating
extensions without using a pruning mechanism would be a brute-force enumeration of all feasible o-i paths
for all i ∈ V . Dominance identifies paths that are useless for finding a most negative reduced cost o-o′-path.
It is crucial for the effectiveness of a labeling algorithm. Refining the analysis of Desaulniers et al. (2020),
we now categorize the principles behind dominance. For any o-i-path p and i-o′-path q, the concatenation is
the o-o′-path with the vertex sequence (p, q) (without repeating i). If (p, q) is a feasible o-o′-path, the path
q is called a feasible completion of p.

Definition 1. Let p1 and p2 be two different o-i-paths (partial paths). If, for each feasible completion q2
of p2 to a path r2 = (p2, q2), there exists a feasible completion q1 of p1 to path r1 = (p1, q1) with smaller
or identical reduced cost compared to r2, then the partial path p2 is dominated. We distinguish between the
following three types of completions q1 of p1:

(i) either q1 = q2 is the feasible completion of p1 (identical completion dominance, ICD),
(ii) or q1 = q′2 is an i-o′-subpath of q2 (including q′2 = q2 as a non-proper possible subpath) such that

r1 = (p1, q
′
2) is the feasible completion of p1 (subpath completion dominance, SCD),

(iii) or there exists another i-o′-path q1 that is the feasible completion of p1 (here, the completion q1 may
or may not be identical to q2 or a subpath of it) (possibly different completion dominance, PDCD).

Many SPPRC labeling algorithms rely on the ICD principle, such as those for the CVRP, the VRPTW,
and almost all of their extensions in which goods are shipped from depot to customers. Likewise, all goods
may be collected from customers and shipped to the depot. The attributes T introduced above serve for
testing ICD. We assume that the relation ⪯ compares two partial paths p1 and p2 via T(p1) ⪯ T(p2).
The validity of the relation indicates that every feasible completion of p2 is a feasible completion of p1 with
identical or smaller reduced cost. In the VRPTW case, ICD can be proven directly because the REFs defined
in (3) are non-decreasing (see, e.g., Desaulniers et al., 1998; Irnich, 2007).

Example 3. In the VRPTW, the relation T1 = T(p1) ⪯ T(p2) = T2 can be written out explicitly as
T rdc
1 ≤ T rdc

2 , T time
1 ≤ T time

2 , T load
1 ≤ T load

2 , and Tng,v
1 ≤ Tng,v

2 for all v ∈ V . Since the REFs (3)
are non-decreasing and feasibility constraints only impose upper bounds, every feasible completion q of p2

is also a feasible completion of p1. All vertices are reached with better or identical attribute values, i.e.,
T(p1, q) ⪯ T(p2, q). Note that this relationship is not only true for completion q but also for extensions with
partial paths of q, i.e., in every intermediate label extension step.

We have seen that ICD completely relies on the attributes T. Therefore, labeling algorithms do not store
and manipulate partial paths directly but use labels. A label L is a (convenient) representation of a feasible
o-i-path p, and we write p = p(L) and L = L(p) to express the mutual relationship. Typically, the label L
stores the attributes T = T(p(L)) indicating the resource state at the last vertex i. In addition, the label
includes a reference to the predecessor label pred(L) when p(L) results from the extension of p(pred(L)).

5

In case of multiple REFs per arc, also a reference to the generating REF is recorded. Herewith, the partial
path can be uniquely reconstructed from the label.

SCD has been applied in BPC algorithms for the pickup-and-delivery problem (Dumas et al., 1991;
Battarra et al., 2014) and the dial-a-ride problem (Doerner and Salazar-González, 2014), i.e., goods and
passenger transportation is between pairs of points. It is often the superior dominance rule for these
problems and related variants, e.g., in the presence of additional time-window and ride-time constraints
(Gschwind and Irnich, 2015; Gschwind et al., 2018).

Example 4. For the pickup-and-delivery problem with time windows (PDPTW), we assume that the n given
transportation requests are represented by pickup-delivery pairs of the form (i, i + n) with i ∈ P the pickup
points and i + n ∈ D the delivery points. Associated demands fulfill di = −di+n > 0. The remaining data
is identical to the VRPTW so that REFs (3a)–(3b) and the corresponding feasibility conditions can be used
here, too.

To model the pairing and precedence constraints, additional attributes are needed: for each request (v, v+
n) for v ∈ P , T open,v indicates whether the request is already picked up but not delivered yet. The initial
values are T open,v

o = 0 for all v ∈ P . Propagation of the attributes along arcs (i, j) ∈ A is defined by

T ′open,v = fopen,v
ij (T) =

 T open,v + 1, if v = j ∈ P
T open,v − 1, if v = n+ j ∈ D
T open,v, otherwise

∀v ∈ V. (4)

The extension to j ̸= o′ is feasible w.r.t. the open request, if 0 ≤ T ′open,v ≤ 1 for all v ∈ P . For j = o′,
T ′open,v = 0 for all v ∈ P is required.

Reduced costs on arcs can here be defined as c̃ij = cij − πj for j ∈ P where πj is the dual price of
the fulfillment constraint of request (j, j + n), and c̃ij = cij, otherwise. With this definition, the delivery
triangle inequality (DTI) holds (for a deeper discussion, see Gschwind et al., 2018) so that the following
strong dominance can be defined. For two partial paths p1 and p2 ending at the same vertex, the relation
T1 = T(p1) ⪯ T(p2) = T2 can be defined with a componentwise ≤ between T1 and T2. In particular, labels
with different sets of open requests can be compared as long as the one associated with p1 is included in the
one associated with p2. The proof of the validity of the strong dominance relies on the DTI and SCD. A
feasible completion q2 of p2 must necessarily include all delivery vertices D2 = {(j + n) ∈ D : T open,j

2 = 1}.
However, if T open,j

1 = 0 for at least one (j + n) ∈ D2, the completion q2 is not a feasible completion of p1,
because only deliveries D1 = {(j + n) ∈ D : T open,j

1 = 1} are valid without pickup and additional pickup for
a feasible completion of p1. Removing all vertices (j + n) ∈ D2 \D1 from q2 creates a proper subpath of q2
which can be used as a feasible completion q1 of p1 (which is a case of SCD). The DTI guarantees that the
reduced cost of q1 is not greater than the reduced cost of q2.

Another example for SCD is the labeling-based BPC algorithm for the soft-clustered VRP (Hintsch and
Irnich, 2019). Even if PDCD is not often found in the literature, we sketch an important example leaving
out the technical details of describing the complete instance data and REFs.

Example 5. The truck-and-trailer routing problem with time windows (Rothenbächer et al., 2018) is another
extension of the VRPTW. Here, the fleet consists of trucks to which trailers can be attached in order to extend
the capacity. Some customers are not accessible with a truck-and-trailer combination but can however be
serviced by a truck alone if its trailer is previously detached and parked at a suitable location. The truck
must attach the trailer at some later point because only a truck-and-trailer combination is allowed to return
to the destination depot.

The BPC algorithm represents routes of a truck-and-trailer combination by the vertices that the truck
visits. The labeling approach stores for each feasible partial path the position where the trailer has been parked
(and not yet coupled again to the truck) in an attribute T pos ∈ V ∪ {⊥} (‘⊥’ for trailer not parked, i.e.,
trailer attached). While a straightforward dominance can only compare paths p1 and p2 with identical trailer
location T pos(p1) = T pos(p2), an improved dominance uses the PDCD for cases with T pos(p1) ̸= T pos(p2).

As explained in (Rothenbächer et al., 2018, p. 1180), the idea is that the potentially dominating path p1
may dominate p2 with T pos(p1) ̸= T pos(p2), ‘if the first vehicle can be transferred into the same trailer status

6

as the second without violating the dominance constraints’. This is tested ‘by hypothetically moving the first
vehicle in up to three steps’:
(1) If T pos(p1) ̸= ⊥, the first truck must pick up its trailer at position T pos(p1),
(2) If T pos(p2) ̸= ⊥, the first truck must park its trailer at position T pos(p2),
(3) The first truck must move back to the current customer, say j.
This creates a detour q+, i.e., a cycle over vertex j. Any completion q2 of p2 is transformed into the
completion q1 = (q+, q2) of p1 (this is PDCD). Note that the higher cost and time attributes of q1 compared
to q2 must be considered leading to modified rules (3a) and (3c).

2.2. Relaxed Subset-Row Inequalities
SRIs have been relaxed in order make the labeling less computationally expensive compared to the

original SRIs as stated in (2). Formally, any integer coefficients aM
r (S,w) on the left-hand side (LHS) that

fulfill aM
r (S,w) ≤ ar(S,w) for all r ∈ Ω give rise to a valid inequality∑

r∈Ω

aM
r (S,w)λr ≤ b(S,w), (5)

in the following denoted as relaxed SRI or simply SRI also.
Consistent SRI relaxations result from modified labeling procedures in which SRI-related attributes are

disregarded under certain conditions. Concepts to control which attributes are considered and disregarded
(‘forgotten’) have turned out very powerful and successful in SPPRC labeling: For example, the definition of
a neighborhood in the ng-route relaxation controls – per vertex – how much information about elementary
is kept or forgotten. This can be seen as a short-term memory. Pecin et al. (2017a,c) have transferred
the idea of a memory to the SRI case. The most flexible relaxation that they define is the following arc-
based memory : For each SRI (S,w), the arc subset M (S,w) ⊂ A defines, for which arcs the information
regarding SRI (S,w) is maintained: if (i, j) ∈ M (S,w), then the labeling procedure considers all (S,w)-
related information during a label extension over the arc (i, j) ∈ A, otherwise, the labeling procedure
disregards and forgets any (S,w)-related information.
Three types of memory have been used in the literature:
1. The origin SRI definition of Jepsen et al. (2008) uses a full memory M (S,w) = A for all SRIs (S,w).
2. The limited node-based memory of Pecin et al. (2017a) is defined per SRI (S,w) with the help of a vertex

subset V (S,w) ⊂ V . The memory is then defined as M (S,w) =
⋃

j∈V (S,w) δ
−(j), where δ−(j) denotes

the set of ingoing arcs of j (for backward labeling, M (S,w) =
⋃

j∈V (S,w) δ
+(j), where δ+(j) denotes the

set of outgoing arcs of j).
3. The limited arc-based memory of Pecin et al. (2017c) can be defined with any subset of arcs.

Typically, the limited memory is not chosen a priori but results from the violated SRIs that have been
identified. The routes with λr > 0 in the RMP solution that contribute to a violated SRI defined by (S,w)
are inspected. Inserting the subsequence between the first and last occurrence of a vertex included in S
suffices to guarantee that the LHS in (5) (relaxed version) coincides with the LHS in (2) (full memory
version). In the case of a node-based memory, the ingoing/outgoing arcs of the vertices of the subsequence
are added to M (S,w). Likewise, the arcs of the subsequence are added to M (S,w) for an arc-based memory.

Next, we describe how the propagation of attributes works in the presence of possibly relaxed SRIs. We
assume that the initial partial path p0 has the label L0 = L(p0) without predecessor and initial resource
state T(L0). Let S denote the set of active SRIs (S,w), i.e., those with non-zero dual price σS,w < 0. For
a partial path p = p(L), its reduced cost including the contribution of the dual prices σS,w is then:

c̃p = cp −
∑
i∈M

aipπi −
∑

(S,w)∈S

aM
p (S,w)σS,w

For each label L, besides the problem-specific attributes T = T(L), additional integer attributes WS,w =
WS,w(L) accumulate the weights wi whenever one of the vertices i ∈ S is reached. The extension of a label L

7

for the partial path p(L) ending at vertex i ∈ V over an arc (i, j) ∈ A produces the following new label L′

with attributes T′ = T(L′), W ′
S,w, and coefficients a′

M
S,w:

T′rdc = f rdc
ij (T)−

∑
(S,w)∈S : j∈S,
WS,w+wj≥1,
(i,j)∈M (S,w)

σS,w (6a)

T′res = f res
ij (T) ∀res ∈ R \ {rdc} (6b)

W ′
S,w =


0, if (i, j) /∈ M (S,w)
WS,w + wj , if j ∈ S, WS,w + wj < 1, and (i, j) ∈ M (S,w)
WS,w + wj − 1, if j ∈ S, WS,w + wj ≥ 1, and (i, j) ∈ M (S,w)
WS,w, otherwise

∀(S,w) ∈ S (6c)

a′
M
S,w = aM

S,w +

{
1, if j ∈ S, WS,w + wj ≥ 1 and (i, j) ∈ M (S,w)
0, otherwise (6d)

We explain the updates in (6a)–(6d) from simple to more difficult. The update of all problem-specific
resources (except for the reduced cost) is straightforward with the REF fij as shown in (6b). The update
of the accumulated weights in (6c) distinguishes four cases: First, if the extension arc (i, j) is not in the
memory, the accumulated value is reset to 0, while all other cases require (i, j) ∈ M (S,w). Second, if the
vertex j is the set S and the new accumulated weight WS,w +wj does not increase to the value 1 or greater,
then this value is stored. Third, if WS,w +wj ≥ 1, then its fractional part, which is equal to WS,w +wj − 1,
is stored (a value in the interval [0, 1)). Fourth and last, in all other cases the current value WS,w is just
transferred to W ′

S,w.
The integer coefficient aM

S,w of the route variable for the SRI (S,w), computed by (6d), increases by one
if and only if the accumulated weight increases to or exceeds 1. This exactly corresponds with the third
case in the computation of W ′

S,w. Note that the coefficients aM
S,w do not necessarily need to be computed

and stored within each label. It is however convenient for our later arguments to be able to refer to (6d).
With the already given explanation, it is now simpler to describe the reduced cost update in (6a). Note

first that in many VRP applications, the propagation of the reduced cost is done with an REF of the type
f rdc
ij (T) = Trdc + c̃ij where c̃ij − (πi + πj)/2 and πi are the dual prices of the partitioning constraints and
πo = πo′ the dual price of the fleet size constraint. However, to be generic, we also allow more involved
cost updates (some examples are He et al., 2019; Liberatore et al., 2010; Bektaş and Laporte, 2011). The
crucial modification related to the dual prices of the SRIs are captured in the sum in (6a). Under the same
conditions for which the integer coefficient a′

M
S,w is increased, the dual price σS,w is incorporated.

Dominance. The seminal paper of Jepsen et al. (2008) defines the following modified dominance rule that
incorporates the dual prices of the active SRIs: Sufficient conditions for a label L1 dominating a label L2,
both resident at the same vertex, are

c̃(L1)−
∑

(S,w)∈S ,

WS,w(L1)>WS,w(L2)

σS,w ≤ c̃(L2). (7)

and T(L1) ⪯ T(L2). Their proof covers the case of a full memory (refined versions of memory were not yet
invented) and argues with ICD. More precisely, the condition T(L1) ⪯ T(L2) was used to argue with ICD.
The intuition is that, for SRIs (S,w) with WS,w(L

1) > WS,w(L
2), the label L1 is closer to be penalized

with −σS,w ≥ 0 than the other label L2. The worst case is taken into account with including all those
penalties in the dominance relation (7). In particular, this allows dominance between two labels for which
the WS,w-attributes are not directly comparable (with ≤).

The works of Pecin et al. (2017a,c) prove that the same dominance rule is valid for the refined memories,
i.e., for any type of memory. It is straightforward to prove the validity of the dominance (7) for SCD in
combination with a full memory. The following example shows that SCD in combination with any type of
limited memory is invalid.

8

Full memory SRIs Node-based memory SRIs Arc-based memory SRIs

ICD ✓ ✓ ✓
SCD ✓ invalid invalid
PDCD invalid invalid invalid

Table 2: Valid (✓) and invalid combinations of dominance principles and types of SRI-related memory.

Example 6. We consider the PDPTW from Example 4. For an SRI (S,w) with associated set S = {j, k, l},
let the delivery vertex i+n not be in the node-based limited memory of the SRI. Two labels L1 and L2 refer
to the same vertex and have identical attributes WS,w(L

1) = WS,w(L
2) = 0. The label L1 has no open

requests. The label L2 has the open request (i, i + n), i.e., i is visited and i + n is not. Consider the
completion q2 = (j, i+ n, k, o′) of label L2. With the limited memory, the attribute WS,w(L

2) is disregarded
at vertex i + n so that no penalty −σS,w is added for the completion of the second path. SCD assumes the
completion q1 = (j, k, o′) of L1. Here, the penalty −σS,w is added when visiting vertex k. As a result, L2

may have a negative reduced cost, while L1 may a positive reduced cost. Therefore, the first label does not
dominate the second. It follows that SCD is not compatible with a limited memory for SRIs.

Table 2 summarizes which type of dominance is compatible with the different types of SRI memory.

3. Improved Dominance

In this section, we focus on the role of unreachable vertices and subsets of unreachable vertices for an
improved SRI-related dominance. For each vertex i ∈ V and each state T of the resources at i, let Ui(T)
denote the set of vertices u that cannot be feasibly reached, i.e., there exists no resource-feasible i-u-path
with initial resource state T at vertex i to reach the vertex u ∈ V .

Example 7. (cont’ed from Example 2) In variants of the VRPTW, a possible definition of the set Ui(T)
only depends on the attribute T time. Compute, for each pair (i, u) ∈ V × V , the latest departure time
LDT (i, u), i.e., the latest point in time to leave vertex i so that one can feasibly reach u. These values can
be computed with an i-to-all shortest-path algorithm with a non-decreasing update function. Then, the set of
unreachable vertices is

U time
i (T) = {u ∈ V : T time > LDT (i, u)}. (8)

The idea is now to test, for a label L resident at a vertex i, whether all vertices u ∈ S for an SRI (S,w)
are unreachable. In the positive case, i.e., if Ui(T) ⊇ S = U time

i (T(L)) holds, the attribute referring to this
SRI (S,w) is irrelevant in the following sense.

First, it follows that the path p(L) cannot be extended to any vertex in u ∈ S and therefore never collects
another penalty σS,w. Second, if another label L1 is trying to dominate L = L2, every feasible completion q2

of p(L2) does not visit vertices u ∈ S. Therefore, extending p(L1) with the same completion q2 (i.e., ICD)
or with a subpath of q2 (i.e., SCD) does not impose any additional penalty σS,w to the first path. Third,
if label L = L1 is trying to dominate another label L2, then the necessary precondition T(L1) ⪯ T(L2)
imposes S ⊆ Ui(T(L1)) ⊆ Ui(T(L2)). Thus, the same argument as in the second case applies here, too.
Summarizing, the attribute is irrelevant for extending label L and for dominance with label L whether it is
the dominating or the dominated label.

We therefore suggest the following improved dominance rule that only differs from (7) in the additional
precondition S ̸⊆ Ui(T(L2)), i.e.,

c̃(L1)−
∑

(S,w)∈S ,

WS,w(L1)>WS,w(L2),

S ̸⊆Ui(T(L2))

σS,w ≤ c̃(L2), (9)

9

assuming that both labels L1 and L2 are resident at vertex i ∈ V . Compared to condition (7), the new
condition (9) is simpler to fulfill, which means that dominance based on condition (9) is stronger.

Note that the condition S ̸⊆ Ui(T(L2)) is independent from label L1 and can therefore be pre-computed,
e.g., when label L2 is created. Consequently, we suggest to build and store within each label a second bit
vector Wweak componentwise defined as

Wweak
S,w (L) =

{
wmax

S,w , if S ⊆ U(T(L))

WS,w(L), otherwise , (10)

where wmax
S,w is the largest weight smaller than 1 for the SRI (S,w), i.e., wmax

S,w = 1/2 for weights with denom-
inator 2, wmax

S,w = 2/3 for denominator 3, wmax
S,w = 3/4 for denominator 4, and wmax

S,w = 4/5 for denominator 5,
see Table 1. The following and final form of the improved dominance rule is equivalent to the rule (9) but
computationally simpler to check within the summation:

c̃(L1)−
∑

(S,w)∈S ,

WS,w(L1)>Wweak
S,w (L2)

σS,w ≤ c̃(L2). (11)

Implementation Details. We consider now the special case of SRIs with |S| = 3 as used in most imple-
mentations. Here the attributes WS,w and Wweak

S,w are binary (assuming that values 0 and 1/2 are encoded
with 0 and 1) and all SRI-related attributes are typically stored in one bit vector, say W = (WS,w) and
Wweak = (Wweak

S,w). The SRIs (S,w) with WS,w(L
1) > Wweak

S,w (L2) are then effectively identified by bit
vector operations

W (L1) ∧ ∼ Wweak(L2)

(with ‘∧’ for the bitwise and-operator and ‘∼’ the bitwise not-operator). Modern programming languages
allow to store bit vectors in a compressed format, e.g., the bitset template class in C++. Our experience
is that using such a compressed representation has a very positive effect on the performance of the labeling
algorithm.

We propose to compute both W (L) and Wweak(L) during the construction of each new label L, i.e.,
in the label extension procedure of the labeling algorithm. The computation of W (L) can be performed as
described by the REF (6c) or in (Pecin et al., 2017c, p. 493). For the efficient computation of Wweak(L),
we propose to a priori create a lookup table that stores the unreachable information regarding all relevant
subsets S for all (S,w) in the following way: For each vertex i ∈ V and each possible attribute value T res

used in the definition of the set of unreachable vertices, e.g., the time attribute T time in Example 2 for the
VRPTW variants, Z(i, T res) = (Z(i, T res)S,w) is a binary vector that indicates whether S ⊆ Ui(T

res) holds.
Precisely, S ⊆ Ui(T

res) if and only if Z(i, T res)S,w = 1. Since this lookup table Z has dimension |V | times
the size of the domain of T res, e.g., the time window width, the binary vector should be stored in compressed
format. One can now directly compute Wweak(L) as

Wweak(L) := W (L) ∨ Z(i, T res(L)) (12)

where ∨ is the bitwise or-operator and i is the vertex that the label L resides at.

4. Subsets of Unreachable Vertices

In this section, we present different possibilities for the definition of the sets of unreachable vertices.
Advantages and disadvantages of the respective definitions are discussed. As examples we consider the
VRPTW and the EVRPTW.

4.1. Unreachability for the VRPTW
In the VRPTW, the definition of unreachable vertices can rely on the time attribute (see above, Eq. (8)),

on the load attribute, or both. We now discuss the latter possibility:

10

Example 8. (cont’ed from Example 7) One can compute, for all i, u ∈ V , a minimum demand i-u-path
with cumulative minimum demand CMD(i, u) so that the set of unreachable vertices is

U load
i (T) = {u ∈ V : T load + CMD(i, u)− di > Q}.

Combining both sets, one can define Ui(T) = U time
i (T) ∪ U load

i (T).

The implementations of improved dominance rules based on U time
i (T), U load

i (T), and Ui(T) are worth
being discussed in more detail. For the time-related sets U time

i (T), we proposed implementing a two-
dimensional lookup table Z(i, T time) for quickly retrieving the unreachability information and relating it to
the SRIs, see end of Section 3. For the load-related sets U load

i (T), a perfectly similar approach is viable.
Here, the lookup table Z(i, T load) is again two-dimensional and indexed by vertices i ∈ V and the domain
{0, 1, . . . , Q} of the load attribute. Computing Wweak(L) can in both cases (time and load) be done with
Eq. (12).

Instead of Eq. (12) using only one lookup table, it is allowed to combine both lookup tables Ztime(i, T time)
and Zload(i, T load) defining Wweak(L) := W (L) ∨ Ztime(i, T time(L)) ∨ Zload(i, T load(L)). A vertex set S
is here considered unreachable if either all vertices u ∈ S have a too early time-window end or if all have
a too large demand. This is not the strongest possible definition of unreachability combining time- and
load-attributes, because all vertices of S have to fall into either category: unreachable because of the time
attribute or because of the load attribute. For the combined sets Ui(T) := U time

i (T) ∪ U load
i (T), the

unreachable vertices are, in general, supersets of U time
i (T) and of U load

i (T). For example, an SRI for the set
S = {i1, i2, i3} may have i1 ∈ U time

i (T) \ U load
i (T) and i2, i3 ∈ U load

i (T) \ U time
i (T). Then, S ̸⊆ U time

i (T)
and S ̸⊆ U load

i (T), but S ⊆ Ui(T).
The use of the sets Ui(T) therefore leads to a stronger dominance compared to U time

i (T) and U load
i (T),

respectively. However, the stronger dominance comes at a high cost regarding computer memory. One would
have to use a three-dimensional lookup table depending on i and both attributes T time and T load. We do
not follow this approach, since it would only work for instances with a few customers and relatively tight
resource windows.

4.2. Unreachability for the EVRPTW
The EVRPTW extends the VRPTW by considering a homogeneous fleet of battery powered electric

vehicles characterized by a limited driving range that can be extended by recharging the vehicle at dedicated
recharging stations. The EVRPTW exists in various variants. We present the definition of Desaulniers et al.
(2016) who assume a linear battery charge and consumption. They focus on the following alternative
recharging policies: On the one hand, either (S) at most a single recharge per route is allowed, or (M)
multiple recharges per route are allowed. On the other hand, (F) batteries are always fully recharged when
visiting a recharging station or (P) partial battery recharges are possible. The result is four variants named
EVRPTW-SF, EVRPTW-SP, EVRPTW-MF, and EVRPTW-MP.

Let the vertex set be V = {o, o′}∪N∪R where N denotes the set of customers and R the set of recharging
stations. Desaulniers et al. (2016) model the battery-capacity constraint with the help of the time bij required
to recharge the consumed energy when traveling between locations i and j, i.e., for each arc (i, j) ∈ A. Let
B be the corresponding battery capacity of a vehicle (in time units). For a route (i0, i1, . . . , ip), the amount
to recharge at every visited recharging station must be decided. Furthermore, the resulting recharging time
needs to be incorporated into the time-window constraints. A necessary condition for the feasibility of a
route is that there exist a schedule (T0, T1, . . . , Tp) and a (battery-)loading plan (X0, X1, . . . , Xp) that fulfill
the following conditions: First, loading is only possible at recharging stations R, i.e., Xj = 0 if ij ∈ N∪{o, o′}
and 0 ≤ Xj ≤ B for ij ∈ R. Second, the time-window constraints are fulfilled, i.e., Tj ∈ [eij , ℓij] for all
j = 0, . . . , p and Tj−1 + sij−1 + Xj−1 + tij−1,ij ≤ Tj for all j ∈ {1, . . . , p}, where it is assumed that there
are no service times at recharging stations, i.e., sij = 0 for ij ∈ R. Third, the loading plan must be feasible,
i.e., B −

∑q
j=1 bij−1,ij +

∑q−1
j=1 Xj ≥ 0 and B −

∑q
j=1 bij−1,ij +

∑q
j=1 Xj ≤ B for all q ∈ {1, . . . , p}.

For the EVRPTW-MP (multiple, partial recharges), the given conditions are sufficient. For the single
recharge policy, i.e., the EVRPTW-SF and EVRPTW-SP, at most one of the vertices i0, i1, . . . , ip can be a

11

Table 3: Resources in VRPTW and Variants of EVRPTW

Problem VRPTW EVRPTW-SP/MP

Attribute(s) forward/backward forward/backward Description

T rdc • • accumulated reduced cost
T load • • accumulated load
T time • service start time
T rch • binary: recharged yes/no
T tMin • earliest time start of service
T tMax • latest time start of service
T rtMax • maximum amount to be recharged

No. of Attr. 3 6

recharging station. For the full recharge policy, i.e., the EVRPTW-SF and EVRPTW-MF, the battery must
always be completely recharged at recharging stations, i.e., B −

∑q
j=1 bij−1,ij +

∑q
j=1 Xj = B if iq ∈ R.

For EVRPTW variants with partial recharge, forward and backward labeling can be based on the same
type of attributes and REFs, because any time-window and recharging feasible forward o-o′-path is, if
reversed, a feasible o-o′-path in the transposed network, and vice versa, i.e., there exists a possibly different
but feasible schedule and battery-load plan for the reversed path if and only if one exists for the original
path (see Desaulniers et al., 2016, p. 1398). Table 3 lists the attributes used to model EVRPTW variants
with partial recharge. For the sake of brevity, we restrict our analysis to partial recharging because this
case is probably more interesting. The attributes for reduced cost T rdc and load T load from the VRPTW
need to be complemented with additional four attributes that we briefly describe now. Three additional
attributes T tMin, T tMax, and T rtMax are needed to describe the linear tradeoff between the maximum
amount of energy that can be recharged (also expressed as a recharging time) and the earliest service time.
The earliest start of service is no longer a single point in time (as T time in the VRPTW) but can lie in the
time interval [T tMin, T tMax] over which the tradeoff-curve with slope −1 is described by the initial maximum
amount of energy T rtMax (referring time T tMin). A feasible schedule and load plan exist by construction of
the tradeoff-curve. All details about the labeling algorithms including the precise definitions of REFs can
be found in (Desaulniers et al., 2016).

We now describe problem-tailored definitions of sets of unreachable vertices for the EVRPTW-SP/MP.
As in Example 7 for the VRPTW, we can pre-compute and use the latest departure time LDT (i, u) from i
to feasibly reach vertex u. Replacing T time by the corresponding attribute T tMin of the EVRPTW-SP/MP,
we get

U time
i (T) = {u ∈ V : T tMin > LDT (i, u)}. (13)

Recall that LDT (i, u) is the latest start time at i to feasibly reach u. Moreover, the distance between i
and u may require recharging. Recharging is necessary if T rtMax + b(i, u) > B for a path between i and
u with minimum recharging time b(i, u). The additional time to be reserved for recharging is therefore
max{0, T rtMax + b(i, u) − B}. Hence, we would like to replace the condition T tMin > LDT (i, u) in the
above definition of U time

i (T) by the condition T tMin+max{0, T rtMax+ b(i, u)−B} > LDT (i, u). However,
the latter condition depends in a non-additive way on T tMin and T rtMax which makes the implementation
with a lookup table practically impossible (see Examples 8 and discussion at the end of Section 3). Instead,
we propose to use

U battery
i (T) = {u ∈ V : (T tMin + T rtMax) + b(i, u)−B > LDT (i, u)}. (14)

in combination with U time
i (T) as defined in (13). The reasoning is as follows: If T rtMax + b(i, u)− B < 0,

then U battery
i (T) ⊆ U time

i (T) so that nothing is wrong when using U battery
i (T). Otherwise, for T rtMax +

12

b(i, u)−B ≥ 0, we have U time
i (T) ⊆ U battery

i (T) and using the latter set is not only feasible but, in general,
produces a stronger dominance.

Overall, we propose to build two lookup tables, Ztime(i, T tMin) based on U time
i (T) and Zbattery(i, T tMin+

T rtMax) based on U battery
i (T). Building the latter lookup table is viable, since the sum T tMin + T rtMax is

as good as any single attribute. In the labeling algorithm, we compute Wweak(L) as

Wweak(L) := W (L) ∨ Ztime(i, T tMin(L)) ∨ Zbattery(i, T tMin(L) + T rtMax(L)). (15)

5. Computational Results

In this section, we report our computational study on the use of the improved dominance rule. Results
were computed with a standard PC running Windows 10 equipped with an Intel(R) Core(TM) i7-6900k
processor clocked at 3.2 GHz with 64 GB RAM main memory. The BPC algorithms were implemented
in C++ and compiled into 64-bit single-thread code with MS Visual Studio 2022. The callable library of
CPLEX 22.1.0 was used for solving the RMPs.

Setup of BPC Algorithms. To facilitate comparisons between VRPTW and EVRPTW, we use the same
setup for our BPC algorithms independent of whether VRPTW or EVRPTW instances are solved (as done
by Desaulniers et al. (2020), even if one would probably get better results with problem-tailored setups).
We sketch the main algorithmic components and their parameterization:
• The labeling algorithm uses a bidirectional strategy with a dynamic half-way point (Tilk et al., 2017) with

the monotone attribute T time for the VRPTW and T tMin for the EVRPTW-SP/MP. For further details
we refer to (Desaulniers et al., 2020, p. 1177).

• As mentioned before, we solve relaxations of the elementary SPPRC which are based on the ng-route
relaxation of Baldacci et al. (2011). With a neighborhood size of |Nj | = 14 for all j ∈ V we try to exploit
the tradeoff between the difficulty of subproblem relaxation and the size of the branch-and-bound tree.

• Arc fixing allows to eliminate provably redundant arcs from the network over which the SPPRC labeling
algorithm is defined. We use the standard version as first described in (Irnich et al., 2010) where reduced
costs are computed with a complete forward and a complete backward labeling at the root node only
(including cuts) of the branch-and-bound tree.

• Heuristic a.k.a partial pricing can help to further reduce the total time spent in pricing. We sequentially
apply four pricing heuristics that use arc-reduced networks with a minimum of 2, 5, 10, and 15 arcs,
respectively, that enter and exit each customer vertex. The exact pricer defined over the complete network
is only called if all heuristics fail. Further details are explained in (Desaulniers et al., 2008).

• Before adding SRIs, violated robust capacity cuts (CC) are added to the RMP to strengthen the linear
relaxation of the master program. The associated separation problem is solved by employing two variants
of the shrinking heuristic (extended and greedy shrinking) as first presented by Ralphs et al. (2003). For
the SRIs, we use the separation algorithm and vertex memory as described in the work of Pecin et al.
(2017a). An SRI or CC is considered violated, if the violation is at least εcut = 0.05. Moreover, the
maximum number of SRIs to add is limited to 320.

• Branching is required whenever the addition of valid inequality is not yet sufficient to produce an integer
solution. For the VRPTW, we apply the standard two-level branching strategy: branching on (V1) the
total number of routes and (V2) the total flow on an arc. For the EVRPTW, we apply the same four-level
branching strategy as in (Desaulniers et al., 2016, 2020): branching on (E1) the total number of routes,
(E2) the total number of recharges, (E3) the total number of recharges at each recharging station i ∈ R,
and (E4) the total flow on an arc. (V1), (E1), (E2), and (E3) are enforced by adding an inequality to
the RMP, while (V2) and (E4) are implemented by removing arcs from the pricing network. In (V2),
(E2), (E3), and (E4), the specific branching variable is chosen as the one with fractional value is closest
to 0.5. The two resulting branches bound the branching variable from above (below) by the rounded-down
(rounded-up) value. The search tree is explored with a best-bound first strategy.

13

VRPTW Instances. Solomon’s benchmark of VRPTW instances consists of 56 instances with 100 customers
grouped by customer distributions random (R), clustered (C), or mixed (RC) as well as by tight (series 1
with subsets R1, C1, RC1) or loose (series 2 with subsets R2, C2, RC2) constraints. 25- and 50-customer
instances result from dropping the last 75 and 50 customers, respectively. Optimal solutions have been
computed for all 56 · 3 = 168 instances and a complete table with exact results can be found in the Online
Supplement of (He et al., 2019). In several other works like (Pecin et al., 2017c,a; Pessoa et al., 2018), an
upper bound of UB = opt+1 is provided to the BPC algorithms where opt is the cost of an optimal solution.
Metaheuristics (e.g., Vidal et al., 2013) routinely find these optimal solutions, too.

EVRPTW Instances. Schneider et al. (2014) constructed the 100-customer EVRPTW benchmark instances
from Solomon’s benchmark. We refer to (Desaulniers et al., 2020) for a detailed description of how recharging
stations were added, battery capacities were set, and some time windows were modified in order to ensure
feasibility in all cases. With the four recharging variants (SF, SP, MF, MP) this leads to an overall benchmark
of 56 · 3 · 4 = 672 instances. Recall that we only consider the recharging variants SP and MP with partial
recharging (see Section 4.2), i.e., 336 of these instances.

Reduction and Grouping Instances. As in (Desaulniers et al., 2020), we restrict the experiments to those
(E)VRPTW instances that require cutting and/or branching to compute an integer optimal solution. In
the other cases, the modified dominance rule has no impact leading to identical results for the original and
improved dominance. The consideration of these instances would otherwise bias the statistical analysis.
Moreover, we restrict ourselves to those instances that the standard BPC algorithm solves to integer opti-
mality within 2 hours. For the VRPTW, 86 instances are already integer optimal when solving the linear
relaxation and only instances R208_100 and R211_100 are not solved within 2 hours leading to 80 VRPTW
instances for the experiments. For the EVRPTW with partial recharging, 50 + 51 = 101 are dropped due
to optimality of the linear relaxation and 28 + 30 = 58 due to the 2-hours time limit. For the experiments,
90 + 87 = 177 EVRPTW-SP and EVRPTW-MP instances remain for the computational study.

5.1. Comparison of the Original and Improved Dominance Rules
In a first experiment, we compare the original dominance rule (7) and the improved dominance rule (9)

implemented as suggested in (11). It is important to perform such a comparison on true instances of the
pricing problem, i.e., with a sequence of dual prices and associated reduced costs as they occur in the course
of a BPC algorithm. Otherwise, instances with, e.g., randomly generated dual prices and, in particular,
with randomly chosen SRIs would not reflect the true diversity and difficulty of SPPRC subproblems.
Furthermore, recall that due to partial pricing the SPPRC instances are either defined by an arc-reduced
network or the complete network.

What complicates the comparison is that any modification on the labeling algorithm typically leads to
different computed routes due to degeneracy, i.e., non-unique optima resulting from labels with identical
reduced costs. As a result, we see very different trajectories of pricing iterations if an original implementation
is replaced by a new one. In our case, when the first violated SRI is added and active, the labeling algorithms
with the original and improved dominance rules produce a completely different series of pricing iterations.
From this point on, the pricing iterations produced by the two labeling algorithms are no longer directly
comparable. We master this complication in the following way:
• We always run the original and the improved labeling algorithm on identical SPPRC pricing instances,

i.e., with exactly the same input in the form of identical dual values. Only the routes that are computed
by one of the two labeling algorithms are added to the RMP. Without loss of generality, we take the routes
from the improved labeling algorithm.

• We also observed that measured computation times (we use the precise chrono STL library of C++) differ
depending on whether the original or the improved labeling algorithm is solved first or second. This effect
is not fully understood by us, but may be explained with effects that memory allocation and deallocation
have on modern PCs. However, we also observed that the recorded computation times become very stable
when the exactly same algorithm is called a second time. Therefore, we twice solve the same SPPRC

14

≥ 1
(n = 80)

≥ 20
(n = 62)

≥ 50
(n = 42)

≥ 100
(n = 27)

≥ 150
(n = 12)

≥ 200
(n = 6)

0.2

0.4

0.6

0.8

1 0
.9
4
6

0
.9
3
0

0
.9
0
7

0
.8
7
6

0
.8
6
3

0
.8
4
3

0
.8
5
7

0
.8
2
4

0
.7
6
2

0
.6
8
8

0
.6
3
3

0
.5
8
4

0
.9
8
2

0
.9
7
8

0
.9
7
3

0
.9
6
6

0
.9
6
3

0
.9
6
2

0
.9
7
3

0
.9
6
7

0
.9
5
7

0
.9
4
3

0
.9
3
5

0
.9
3
5

0
.8
8
7

0
.8
6
4

0
.8
3
5

0
.8
0
7

0
.8
0
4

0
.7
9
7

0
.7
8
6

0
.7
4
1

0
.6
8
1

0
.6
1
7

0
.5
9
6

0
.5
7
2

G
eo

.M
ea

n
of

R
at

io
s

VRPTW

Time [all] Time [exact] Labels [all] Labels [exact] Dominance tests [all] Dominance tests [exact]

≥ 1
(n = 90)

≥ 20
(n = 53)

≥ 50
(n = 28)

≥ 100
(n = 12)

≥ 150
(n = 6)

≥ 200
(n = 3)

0.2

0.4

0.6

0.8

1

0
.9
8
9

0
.9
6
4

0
.9
2
4

0
.8
7
0

0
.8
8
5

0
.8
4
9

0
.9
4
2

0
.8
9
1

0
.8
1
4

0
.7
2
7

0
.7
2
9

0
.6
9
6

0
.9
8
6

0
.9
8
1

0
.9
7
2

0
.9
5
9

0
.9
6
7

0
.9
5
2

0
.9
7
3

0
.9
6
4

0
.9
5
0

0
.9
3
0

0
.9
3
7

0
.9
1
7

0
.9
1
5

0
.8
8
8

0
.8
3
8

0
.7
6
6

0
.7
9
7

0
.7
4
6

0
.8
4
3

0
.7
9
1

0
.7
1
3

0
.6
0
6

0
.6
2
3

0
.5
7
4

G
eo

.M
ea

n
of

R
at

io
s

EVRPTW-SP

Time [all] Time [exact] Labels [all] Labels [exact] Dominance tests [all] Dominance tests [exact]

≥ 1
(n = 87)

≥ 20
(n = 53)

≥ 50
(n = 33)

≥ 100
(n = 14)

≥ 150
(n = 5)

≥ 200
(n = 2)

0.2

0.4

0.6

0.8

1 0
.9
7
1

0
.9
4
4

0
.9
1
5

0
.8
7
8

0
.7
9
8

0
.8
1
9

0
.9
3
5

0
.8
7
0

0
.8
0
9

0
.7
2
3

0
.6
1
6

0
.6
0
4

0
.9
8
4

0
.9
7
6

0
.9
6
9

0
.9
6
4

0
.9
4
2

0
.9
2
6

0
.9
7
1

0
.9
5
5

0
.9
4
0

0
.9
2
9

0
.8
9
5

0
.8
4
7

0
.9
0
9

0
.8
7
0

0
.8
3
3

0
.7
8
8

0
.6
8
1

0
.7
1
0

0
.8
4
0

0
.7
6
8

0
.7
0
5

0
.6
1
8

0
.4
8
9

0
.5
0
3

G
eo

.M
ea

n
of

R
at

io
s

EVRPTW-MP

Time [all] Time [exact] Labels [all] Labels [exact] Dominance tests [all] Dominance tests [exact]

Figure 1: Geometric mean of the computation time ratios, number of generated labels, and number of dominance tests
performed; we distinguish between all pricing iterations (partial and exact: [all]) and iterations with exact pricing using the
complete network ([exact]); results are grouped by ≥ nSRI where only instances for which the total number of added SRIs is
at least nSRI are considered.

instance (defined by identical dual values) with the original labeling algorithm and twice with the improved
labeling algorithm. Recorded computation times are those from the second and fourth call.

• We compensate the increased computational effort (solving each pricing problem four times) by extending
the standard computation time limit of 2 hour to 8 hours.

• For better comparison and reproducibility, full memory and no arc fixing is used.
• For the VRPTW, the load resource is often not binding and therefore the improved dominance considers

only the time resource with the set of unreachable vertices U time
i , see Eq. (8).

• The same is true for the EVRPTW variants. Therefore, the improved dominance considers both the
attribute time with the set of unreachable vertices U tMin

i (Eq. (13)) and battery resource with the set of
unreachable vertices U battery

i (Eq. (14)).
Figure 1 summarizes the comparison of the original and improved dominance rule in the form of geometric
means of the following criteria:

Time: The ratio of the computation times of the labeling algorithm equipped with the improved and the
original dominance rule;

Labels: the ratio of the number of generated labels;

15

Dominance tests: the ratio of the number of dominance tests that have been performed.
We distinguish between:

all: All calls to the labeling algorithm are taken into account (partial pricing using arc-reduced networks
and exact pricing using complete networks);

exact: Only calls to the labeling algorithm using the complete networks are considered.
Note that the latter filtering step focusses on the more difficult SPPRC subproblems that require, in com-
parison, substantially longer computation times. The combination with the above three criteria with all
and exact gives six ratios displayed in different colors in the bar charts of Figure 1.

The geometric means of all ratios are first computed per instances. Afterwards, geometric means are
computed for the VRPTW, EVRPTW-SP, and EVRPTW-MP subsets. For analyzing the impact of the
number nSRI of SRIs, we filter over instances that have at least 1, 20, 50, 100, 150, and 200 SRIs in the
RMP. The resulting number of instances is indicated as ‘(n = □)’.

All average ratios are strictly smaller than one showing that the improved dominance is always beneficial.
For each of the 18 = 3 · 6 groups, the decrease in the number of dominance comparisons is larger than the
decrease in computation time. In turn, the decrease in computation time is larger than the decrease in
the number of generated labels. This is intuitive, since the computational effort is expected to be linear
in the number of labels, while the number of dominance comparisons is quadratic in the number of labels.
Dominance testing is responsible for a large share of the consumed computation time but other steps such
as label generation, label extension, and memory management also contribute. This explains why results
are even better regarding the number of dominance tests compared to SPPRC computation times.

Figure 1 also shows that effects are always more pronounced for increasing values of nSRI . Likewise,
effects are more pronounced for exact and less for all. This means that the improved dominance is more
helpful for more difficult and more time-consuming SPPRC subproblems. It is noticeable that these results
are consistent over all 18 groups. In the best case, i.e., for VRPTW, nSRI ≥ 200, and exact, the SPPRC
computation times drop below 60% on average. For the EVRPTW-SP the computation time drops to
69.6% and for the EVRPTW-MP to 60.4% compared to the respective BPC algorithms that use the original
dominance.

5.2. Selection of Attributes in EVRPTW Variants
For the EVRPTW variants with partial recharging, different combinations of the set of unreachable

vertices U load
i for the load attribute, U tMin

i (Eq. (13)) for the time attribute, and U battery
i (Eq. (14))

for the battery attribute could be compared. The vehicle capacity is hardly binding in the Solomon-based
instances. Thus, it is not promising to consider the load attribute for unreachability (this was also confirmed
in pretests). Instead, we consider the time attribute and the combination of the attributes time and battery
(referred to as time+bat in the following). For the comparison, the two EVRPTW variants (MP and SP)
and the two SRI memory variants (full and limited) are each tested with the two versions time and time+bat
of defining unreachable customers. Table 4 summarizes the results in the form of aggregate indicators that
have the following meaning:

#opt: Number of instances solved to optimality within the time limit;
#faster: Number of instances for which the BPC using attribute time or the combination of the at-

tributes time+bat is faster than the respective counterpart;
BPC time: Average computation time in seconds of the BPC algorithm (unsolved instances are counted

with 7200 seconds);
#SRIs: Average number of SRIs added to the RMP;
% time prep.+cutting: Relative time spent with preparation (computation of the sets U time

i and, for
time+bat, of the sets U battery

i) as well as the time for SRI separation in percent;
Comparing the BPC runs using the improved dominance with either time or time+bat, the average

number of SRIs added to the RMP is very similar (differing by less than two percent) in the corresponding
cases (MP/SP and full/limited). Therefore, the significantly higher percentage of the BPC time spent in
SRI-related computations found for time+bat can only be explained with the additional computational efforts
of computing the sets U battery

i : These computations approximately double the values %time prep.+cutting.

16

Variant EVRPTW-SP EVRPTW-MP
(n = 90) (n = 87)

Attributes SRI memory full limited full limited

time #opt 88 89 86 87
#faster 66 57 59 59

BPC time 316.5 293.6 313.9 295.6
#SRIs 45.5 81.0 51.0 88.4

% time prep.+cutting 3.9 6.8 2.5 4.6

time+bat #opt 88 88 87 87
#faster 21 21 30 28

BPC time 327.4 295.3 318.3 298.0
#SRIs 45.3 82.2 51.0 88.8

% time prep.+cutting 7.7 12.6 4.4 8.1
Note: Better values are highlighted in bold.

Table 4: Comparison of BPC algorithms using the improved dominance with either the time attribute alone or with the
combination of time and battery attributes (time+bat).

While the SRI-related computation time accounts for between 2.5 and 12.6 percent of the total BPC
time, the differences of the BPC times are rather small in the corresponding cases (approx. 3.5 percent for
SP/full and less than 1.5 percent in the three other cases). Therefore, the increased computational effort
for computing the sets U battery

i in the BPC with time+bat is compensated by a slightly stronger improved
dominance. However, the indicator values #faster show that the latter effect is not strong enough to make
the BPC algorithm using time+bat the superior version: The BPC algorithm using time is the faster variant
in the majority of the cases (66 and 57 of 90 EVRPTW-SP instances as well as 59 of 87 EVRPTW-MP
instances).

It should be mentioned also that EVRPTW and VRPTW instances differ strongly in the size of the
attribute domains, even if both are Solomon-based: In the VRPTW, travel times are computed as Euclidian
distances using rounding with one digit precision. Thus, the domain of the lookup table storing the sets U time

i

is relatively small. Comparing the original and improved dominance, the percentage of the solution time
that BPC algorithms spend on separation and preprocessing (%time prep.+cutting) increases from 1.6 to
2.0 percent (full memory, an average of 78 cuts) and from 1.9 to 2.2 percent (limited memory, an average of
105 cuts). In contrast, EVRPTW travel times have a 100-times higher precision expanding the size of the
lookup tables for U time

i and U battery
i by the same factor. As a result, computing and storing their entries

requires a reasonably higher amount of the overall BPC time, see Table 4. This also explains the relatively
large values of %time prep.+cutting in the EVRPTW.

In conclusion, even if the improved dominance in the BPC with time+bat is stronger, unreachability for
Solomon-based EVRPTW instances should better be based on the time attribute alone. For the remainder,
we only use the sets U time

i as described in (13) (see Section 4.2).

5.3. BPC Results
Finally, we present the results obtained with the four BPC algorithms (improved and original dominance,

full memory and limited memory) for the VRPTW, EVRPTW-SP and EVRPTW-MP. In contrast to the
experiments presented in Section 5.1, each run is now completely independent of the others. We impose
a time limit of 2 hours (7200 seconds) and allow arc fixing to make the BPC algorithms competitive with
state-of-the-art implementations.

The final results are presented with the help of performance profiles (Dolan and Moré, 2002). Given a
set of algorithms A = {A1, A2, . . . , Ap} (p = 4 for our four computational settings), the performance profile
ρA(τ) of an algorithm A ∈ A describes the ratio of instances that can be solved by A within a factor τ
compared to the fastest algorithm, i.e., ρA(τ) =

∣∣{I ∈ I : tAI /t
∗
I ≤ τ

}∣∣ / |I|, where I is the benchmark set, tAI

17

is the computation time of algorithm A when applied to instance I ∈ I, and t∗I is the minimal computation
time of all algorithms A solving the instance I. It follows that ρA(1) is the percentage of instances for which
algorithm A is the fastest. Unsolved instances are taken into account with a time of tAI = ∞ so that, for
large values of τ , ρA(τ) is the percentage of instances solved by A within the time limit (we assume that
∞/∞ gives ∞).

Separate diagrams with performance profiles for the VRPTW, EVRPTW-SP, and EVRPTW-MP are
presented in the Figure 2. In all three cases, the BPC algorithms that use the improved dominance are the
ones that perform best, i.e., the respective profiles indicate that a larger number of the instances are solved
in a time not exceeding the time of fastest algorithm by a factor of τ .

For the VRPTW, the BPC algorithm with improved dominance and a full memory is the one that is
the fastest in 42 of the n = 80 cases (see τ = 1). However, starting from τ = 1.3, the BPC algorithm with
improved dominance and a limited memory solves more instances in the corresponding extended time; it is
the only BPC algorithm solving all n = 80 VRPTW instances within the time limit (see τ > 10). The point
here seems to be that a limited memory is crucial only for some more difficult instances (e.g., instance R209
is not solved with the full memory, but the variants with limited memory solve it within 400 seconds).

For both the EVRPTW-SP and EVRPTW-MP, the BPC algorithms that use a limited memory are
clearly inferior. This outcome is somewhat unexpected, but can be explained with the indicator presented
in the previous Section 5.2: The limited memory clearly lowers the computational effort per SRI, but it almost
doubles the number of generated SRIs on average (see #SRIs in Table 4). This effect is less pronounced in
the VRPTW explaining the inferior performance of the limited-memory BPC variants. It should however
be noted that, for the EVRPTW-SP, the BPC algorithms with limited memory solve one more instance (89
instead of 88 of the n = 90 instances). Likewise, the BPC algorithm with improved dominance and full
memory fails to solve one instance, while all others solve all of the n = 87 EVRPTW-MP instances. On
the positive side, the profiles for τ < 2, i.e., where the profiles really differ, show that the winning BPC
algorithm is the one with the improved dominance and full memory.

6. Conclusions

In this work, we have introduced an acceleration technique for BPC algorithms that use SRIs and a
labeling-based solution approach to solve the column-generation subproblems. Essentially, the speedup
results from an improved dominance rule for comparing labels. Using the concept of unreachable customers,
the improved dominance leads, on average, to a smaller number of labels to store, extend, and compare
in the labeling algorithm. This, in turn, accelerates pricing, which consumes most of the computational
time of BPC algorithms in vehicle routing (and beyond). For some instances in our testbed, the total BPC
computation time is more than halved by using of the improved dominance rules.

From the application side, we have shown how to compute sets of unreachable customers for the standard
load and time resources as we find them in the VRPTW. An example of more complicated resource updates
and resource dependencies is the EVRPTW with partial recharging, for which we have shown how to
construct sets of unreachable customers with the help of the sum of two attribute values (one for the earliest
service start time and the other for the maximum amount to be recharged). Which of the attributes or
combinations of attributes is finally used should be decided by computational tests. The reason for this is
that using multiple attributes in combination provides stronger improved dominance rules, but the necessary
pre-computation of the unreachable customer sets may require a substantial computational effort. For the
EVRPTW, we have seen that using a single time attribute alone is superior to the more sophisticated
attribute combination (with time and battery). Note that such a result is certainly not generalizable, as it
strongly depends on the chosen instance set.

What is generalizable, however, is the principle of improving the SRI-related dominance by considering
sets of unreachable customers. We have classified the SRI memories (full and limited, vertex-based or arc-
based) as well as the dominance principles (identical completion, subpath completion, and possibly different
completion) with respect to their compatibility. The compatible cases cover a wide range of problems
from the family of VRPs (Irnich et al., 2014). In summary, there are several points that speak in favor of

18

1
√
2 2 2

√
2 4 4

√
2 8

0

20

40

60

80

τ

nu
m

be
r

of
in

st
an

ce
s

VRPTW

Improved dominance and full mem. SRIs Original dominance and full mem. SRIs
Improved dominance and lim. mem. SRIs Original dominance and lim. mem. SRIs

1
√
2 2 2

√
2 4

0

20

40

60

80

τ

nu
m

be
r

of
in

st
an

ce
s

EVRPTW-SP

Improved dominance and full mem. SRIs Original dominance and full mem. SRIs
Improved dominance and lim. mem. SRIs Original dominance and lim. mem. SRIs

1
√
2 2 2

√
2 4

0

20

40

60

80

τ

nu
m

be
r

of
in

st
an

ce
s

EVRPTW-MP

Improved dominance and full mem. SRIs Original dominance and full mem. SRIs
Improved dominance and lim. mem. SRIs Original dominance and lim. mem. SRIs

Figure 2: Performance profiles of four BPC algorithms using either the original or improved dominance and either a full or
limited memory for SRIs.

19

improving SRI-related dominance by unreachability: It is widely applicable, the implementation is rather
straightforward because it affects a clear-cut and limited component of the BPC algorithm, and it can
significantly accelerate the overall solution process.

Acknowledgement

This research was supported by the Deutsche Forschungsgemeinschaft (DFG) under grants GS 83/1-1
and IR 122/10-1 project no. 418727865. This support is gratefully acknowledged.

References

Baldacci, R., Christofides, N., and Mingozzi, A. (2008). An exact algorithm for the vehicle routing problem based on the set
partitioning formulation with additional cuts. Mathematical Programming, 115(2), 351–385.

Baldacci, R., Mingozzi, A., and Roberti, R. (2011). New route relaxation and pricing strategies for the vehicle routing problem.
Operations Research, 59(5), 1269–1283.

Baldacci, R., Mingozzi, A., and Roberti, R. (2012). New state-space relaxations for solving the traveling salesman problem
with time windows. INFORMS Journal on Computing, 24(3), 356–371.

Balster, I., Bulhões, T., Munari, P., and Sadykov, R. (2022). A new family of route formulations for split delivery vehicle
routing problems. Optimization Online 8918, May. http://www.optimization-online.org/DB_FILE/2022/05/8918.pdf.

Battarra, M., Cordeau, J.-F., and Iori, M. (2014). Pickup-and-delivery problems for goods transportation. In Toth and Vigo
(2014), chapter 6, pages 161–191.

Bektaş, T. and Laporte, G. (2011). The pollution-routing problem. Transportation Research Part B: Methodological, 45(8),
1232–1250.

Bianchessi, N., Gschwind, T., and Irnich, S. (2022). Resource-window reduction by reduced costs in path-based formulations
for routing and scheduling problems. Technical Report LM-2022-05, Chair of Logistics Management, Gutenberg School of
Management and Economics, Johannes Gutenberg University Mainz, Mainz, Germany.

Bode, C. and Irnich, S. (2014). The shortest-path problem with resource constraints with (k, 2)-loop elimination and its
application to the capacitated arc-routing problem. European Journal of Operational Research, 238(2), 415–426.

Boland, N., Dethridge, J., and Dumitrescu, I. (2006). Accelerated label setting algorithms for the elementary resource con-
strained shortest path problem. Operations Research Letters, 34(1), 58 – 68.

Costa, L., Contardo, C., and Desaulniers, G. (2019). Exact branch-price-and-cut algorithms for vehicle routing. Transportation
Science, 53(4), 946–985.

Desaulniers, G. (2010). Branch-and-price-and-cut for the split-delivery vehicle routing problem with time windows. Operations
Research, 58(1), 179–192.

Desaulniers, G., Desrosiers, J., Ioachim, I., M. Solomon, M., Soumis, F., and Villeneuve, D. (1998). A unified framework for
deterministic time constrained vehicle routing and crew scheduling problems. In T. G. Crainic and G. Laporte, editors, Fleet
Management and Logistics, pages 57–93. Springer.

Desaulniers, G., Desrosiers, J., and Solomon, M., editors (2005). Column Generation. Springer, New York, NY.
Desaulniers, G., Lessard, F., and Hadjar, A. (2008). Tabu search, partial elementarity, and generalized k-path inequalities for

the vehicle routing problem with time windows. Transportation Science, 42(3), 387–404.
Desaulniers, G., Madsen, O. B., and Ropke, S. (2014). The vehicle routing problem with time windows. In Toth and Vigo

(2014), chapter 5, pages 119–159.
Desaulniers, G., Errico, F., Irnich, S., and Schneider, M. (2016). Exact algorithms for electric vehicle-routing problems with

time windows. Operations Research, 64(6), 1388–1405.
Desaulniers, G., Gschwind, T., and Irnich, S. (2020). Variable fixing for two-arc sequences in branch-price-and-cut algorithms

on path-based models. Transportation Science, 54(5), 1170–1188.
Desrochers, M., Desrosiers, J., and Solomon, M. (1992). A new optimization algorithm for the vehicle routing problem with

time windows. Operations Research, 40(2), 342–354.
Doerner, K. F. and Salazar-González, J.-J. (2014). Pickup-and-delivery problems for people transportation. In Toth and Vigo

(2014), chapter 7, pages 193–212.
Dolan, E. D. and Moré, J. J. (2002). Benchmarking optimization software with performance profiles. Mathematical Program-

ming, 91(2), 201–213.
Dumas, Y., Desrosiers, J., and Soumis, F. (1991). The pick-up and delivery problem with time windows. European Journal of

Operational Research, 54, 7–22.
Feillet, D., Dejax, P., Gendreau, M., and Guéguen, C. (2004). An exact algorithm for the elementary shortest path problem

with resource constraints: Application to some vehicle routing problems. Networks, 44(3), 216–229.
Goel, A. and Irnich, S. (2017). An exact method for vehicle routing and truck driver scheduling problems. Transportation

Science, 51(2), 737–754.
Gschwind, T. and Irnich, S. (2015). Effective handling of dynamic time windows and its application to solving the dial-a-ride

problem. Transportation Science, 49(2), 335–354.
Gschwind, T., Irnich, S., Rothenbächer, A.-K., and Tilk, C. (2018). Bidirectional labeling in column-generation algorithms for

pickup-and-delivery problems. European Journal of Operational Research, 266(2), 521–530.

20

http://www.optimization-online.org/DB_FILE/2022/05/8918.pdf

He, Q., Irnich, S., and Song, Y. (2019). Branch-cut-and-price for the vehicle routing problem with time windows and convex
node costs. Transportation Science.

Hintsch, T. and Irnich, S. (2019). Exact solution of the soft-clustered vehicle-routing problem. European Journal of Operational
Research, 280, 164–178.

Irnich, S. (2007). Resource extension functions: properties, inversion, and generalization to segments. OR Spectrum, 30(1),
113–148.

Irnich, S. and Desaulniers, G. (2005). Shortest path problems with resource constraints. In Desaulniers et al. (2005), chapter 2,
pages 33–65.

Irnich, S. and Villeneuve, D. (2006). The shortest path problem with resource constraints and k-cycle elimination for k ≥ 3.
INFORMS Journal on Computing, 18(3), 391–406.

Irnich, S., Desaulniers, G., Desrosiers, J., and Hadjar, A. (2010). Path-reduced costs for eliminating arcs in routing and
scheduling. INFORMS Journal on Computing, 22(2), 297–313.

Irnich, S., Toth, P., and Vigo, D. (2014). The family of vehicle routing problems. In Toth and Vigo (2014), chapter 1, pages
1–33.

Jepsen, M., Petersen, B., Spoorendonk, S., and Pisinger, D. (2008). Subset-row inequalities applied to the vehicle-routing
problem with time windows. Operations Research, 56(2), 497–511.

Liberatore, F., Righini, G., and Salani, M. (2010). A column generation algorithm for the vehicle routing problem with soft
time windows. 4OR, 9(1), 49–82.

Lübbecke, M. and Desrosiers, J. (2005). Selected topics in column generation. Operations Research, 53(6), 1007–1023.
Pecin, D., Pessoa, A., Poggi, M., and Uchoa, E. (2017a). Improved branch-cut-and-price for capacitated vehicle routing.

Mathematical Programming Computation, 9(1), 61–100.
Pecin, D., Pessoa, A., Poggi, M., Uchoa, E., and Santos, H. (2017b). Limited memory rank-1 cuts for vehicle routing problems.

Operations Research Letters, 45(3), 206–209.
Pecin, D., Contardo, C., Desaulniers, G., and Uchoa, E. (2017c). New enhancements for the exact solution of the vehicle

routing problem with time windows. INFORMS Journal on Computing, 29(3), 489–502.
Pessoa, A., Sadykov, R., Uchoa, E., and Vanderbeck, F. (2018). Automation and combination of linear-programming based

stabilization techniques in column generation. INFORMS Journal on Computing, 30(2), 339–360.
Ralphs, T. K., Kopman, L., Pulleyblank, W. R., and Trotter, L. (2003). On the capacitated vehicle routing problem. Mathe-

matical Programming, 94(2-3), 343–359.
Righini, G. and Salani, M. (2006). Symmetry helps: Bounded bi-directional dynamic programming for the elementary shortest

path problem with resource constraints. Discrete Optimization, 3(3), 255–273.
Righini, G. and Salani, M. (2008). New dynamic programming algorithms for the resource constrained elementary shortest

path problem. Networks, 51(3), 155–170.
Rothenbächer, A.-K., Drexl, M., and Irnich, S. (2018). Branch-and-price-and-cut for the truck-and-trailer routing problem

with time windows. Transportation Science, 52(5), 1174–1190.
Sadykov, R., Uchoa, E., and Pessoa, A. (2021). A bucket graph-based labeling algorithm with application to vehicle routing.

Transportation Science, 55(1), 4–28.
Schneider, M., Stenger, A., and Goeke, D. (2014). The electric vehicle-routing problem with time windows and recharging

stations. Transportation Science, 48(4), 500–520.
Spoorendonk, S. and Desaulniers, G. (2010). Clique inequalities applied to the vehicle routing problem with time windows.

INFOR, 48(1), 53–67.
Tilk, C., Rothenbächer, A.-K., Gschwind, T., and Irnich, S. (2017). Asymmetry matters: Dynamic half-way points in bidi-

rectional labeling for solving shortest path problems with resource constraints faster. European Journal of Operational
Research, 261(2), 530–539.

Toth, P. and Vigo, D., editors (2014). Vehicle routing. MOS-SIAM Series on Optimization. Society for Industrial and Applied
Mathematics, Philadelphia, PA.

Vidal, T., Crainic, T. G., Gendreau, M., and Prins, C. (2013). A hybrid genetic algorithm with adaptive diversity management
for a large class of vehicle routing problems with time-windows. Computers & Operations Research, 40(1), 475–489.

21

	Introduction
	Subset-Row Inequalities in Labeling Algorithms
	SPPRC and Labeling
	Relaxed Subset-Row Inequalities

	Improved Dominance
	Subsets of Unreachable Vertices
	Unreachability for the VRPTW
	Unreachability for the EVRPTW

	Computational Results
	Comparison of the Original and Improved Dominance Rules
	Selection of Attributes in EVRPTW Variants
	BPC Results

	Conclusions

