Johannes Gutenberg-Universität Mainz Prof. Dr. Stefan Irnich Jakob-Welder-Weg 9 D-55128 Mainz Seminar in Logistikmanagement

M.Sc. Stefan Faldum
M.Sc. Carolin Hasse
M.Sc. André Hessenius
M.Sc. Laura Lüke
M.Sc. Jeanette Schmidt
Prof. Dr. Stefan Irnich

(SoSe 2024)

Themen Bachelorseminar Logistik

1 Standortplanung

Thema 1 (Das p-Center Problem: Modelle)

Im p-Center Problem (PCP) wird jedem Kunden ein Standort zugeordnet, so dass das Maximum der (gewichteten) Distanzen zwischen Kunden und zugeordneten Standorten minimal ist. Es gibt verschiedene Möglichkeiten das PCP zu modellieren. Beschreiben Sie diese Modelle, setzen Sie diese mittels einer (kostenlosen) Modellierungssprache (z.B. ZIMPL/SCIP) um und analysieren Sie die verschiedenen Modelle anhand von Benchmarkinstanzen. (Elloumi et al. 2004)

Thema 2 (Warehouse Location Problem mit Kundenpräferenzen)

Das Warehouse Location Problem gehört zu den klassischen Problemen der Standortplanung. Es stehen verschiedene Standorte zur Eröffnung von Lagerhäusern zur Verfügung. Beim Warehouse Location Problem müssen zwei Entscheidungen getroffen werden: Zum einem die Lokationsentscheidung, das Öffnen oder Nichtöffnen von Standorten, zum anderen legt die Allokationsentscheidung fest, welcher Kunde von welchem Standort bedient werden soll. Gesucht ist diejenige Lösung, die die Gesamtkosten aus beiden Entscheidungen minimiert. Eine Erweiterung des Warehouse Location Problems ist der Einbeziehungen von Kundenpräferenzen. Hierbei muss jeder Kunde von dem Standort aus der Menge der geöffneten Standorte beliefert werden, zu welche er die größte Präferenz hat. Beschreiben Sie diese Modelle, setzen Sie diese mittels einer (kostenlosen) Modellierungssprache (z.B. ZIMPL/SCIP) um und analysieren Sie den Einfluss der verschiedenen Erweiterungen anhand von Benchmarkinstanzen. (Hansen et al. 2004), (Aikens 1985)

Thema 3 (Standortplanung mit nicht-konventionellen Anforderungen)

Im p-dispersion Problem geht es um Standortentscheidungen für unerwünschte Anlagen wie beispielsweise Mülldeponien, Lagern im militärischen Bereich oder Atomkraftwerken. Es gibt verschiedene Möglichkeiten das p-dispersion Problem zu modellieren. Beschreiben Sie diese Modelle, setzen Sie diese mittels einer (kostenlosen) Modellierungssprache (z.B. ZIMPL/SCIP) um und analysieren Sie die verschiedenen Modelle anhand von Benchmarkinstanzen. (Sayah and Irnich 2017)

2 Transport

Thema 4 (The Red-Blue Transportation Problem)

Beim rot-blau Transportproblem handelt es sich um ein klassisches Transportproblem mit zusätzlichen Restriktionen. Beschreiben Sie diese Problemvariante, setzen Sie die beiden vorgestellten Modelle mittels einer (kostenlosen) Modellierungssprache (z.B. ZIMPL/SCIP) um und untersuchen Sie die verschiedenen Modelle anhand von Benchmarkinstanzen. (Vancroonenburg et al. 2014)

Thema 5 (Heuristiken für das Fixkosten-Transportproblem)

Durch Berücksichtigung von Fixkosten für die Nutzung einer Verbindung zwischen Anbieter und Nachfrager geht das klassische Transportproblem (TPP) über in das Fixkosten-TPP. Untersuchen Sie heuristische Lösungsverfahren für das Fixkosten-TPP und setzen Sie mindestens eine Heuristik mittels MS Excel um. (Adlakha and Kowalski 2003)

Thema 6 (Das elementare Kürzeste-Wege-Problem: Modelle)

Beim elementaren Kürzesten-Wege-Problem darf im Gegensatz zum klassischen Kürzesten-Wege-Problem jeder Ort nur einmal besucht werden. Finden Sie Modelle für diese Variante und setzen Sie diese mittels einer (kostenlosen) Modellierungssprache (z.B. ZIMPL/SCIP) um. Analysieren Sie Vor- und Nachteile der umgesetzten Modelle in einer Rechenstudie. Taccari (2016)

Thema 7 (Minimum Spanning Trees)

Ein spannender Baum ist in der Graphentheorie ein Teilgraph, der alle Knoten des Ursprungsgraphen enthält, zusammenhängend ist und keine Kreise enthält. Er ist minimal, falls sein Kantengewicht unter allen spannenden Bäumen minimal ist. Geben Sie einen Überblick über das Problem und stellen Sie verschiedene Modelle vor. Setzen Sie verschiedene Modelle mittels einer (kostenlosen) Modellierungssprache (z.B. ZIMPL/SCIP) um und untersuchen Sie die Modelle anhand von Benchmarkinstanzen. (Tipp: Achten Sie insbesondere darauf welche Modelle sich für eine Umsetzung eignen.) (Abdelmaguid 2018)

3 Tourenplanung

Thema 8 (Traveling Salesman Problem mit Zeitfenstern: Modelle)

Eine wichtige Erweiterung des Traveling-Salesman-Problem (TSP) ist das TSP mit Zeitfenstern (TSPTW). Beschreiben und vergleichen Sie unterschiedliche Modelle für das TSPTW und setzen Sie mindestens zwei dieser Modelle mittels einer (kostenlosen) Modellierungssprache (z.B. ZIMPL/SCIP) um. Analysieren Sie die verschiedenen Modelle anhand von Benchmarkinstanzen. (Dash et al. 2012) und (Langevin et al. 1993)

Thema 9 (Modellierung des Capacitated Vehicle Routing Problems (CVRP))

Beim CVRP geht es darum, mit einer Fahrzeugflotte alle Kunden zu bedienen. Jeder auszuliefernde Gegenstand eines Kunden hat ein Gewicht und jedes Fahrzeug hat nur eine bestimmte Kapazität. Ziel ist es, die Gesamtdistanz der von allen Fahrzeugen zurückgelegten Strecken zu minimieren, ohne die Kapazitätsrestriktionen zu verletzten. Beschreiben und vergleichen Sie unterschiedliche Modelle des CVRP. Setzen Sie mehrere dieser Modelle mittels einer (kostenlosen) Modellierungssprache (z.B. ZIMPL/SCIP) um und analysieren Sie die verschiedenen Modelle anhand von Benchmarkinstanzen. (Baldacci et al. 2004)

Thema 10 (Modellierung des Generalized Traveling Salesman Problems (GTSP))

Beim GTSP sind jeweils mehrere Kunden in Clustern zusammengefasst. Ziel ist es, aus jedem Cluster mindestens einen Kunden zu bedienen und dabei die zurückgelegte Strecke des Fahrzeugs zu minimieren. Beispielsweise ist eine Menge von Inseln gegeben, die alle beliefert werden müssen, aber der Lieferant darf sich jeweils aussuchen, welchen Hafen einer Insel er anfährt. Beschreiben Sie das Problem und vergleichen Sie mehrere Modellierungsmöglichkeiten. Setzen Sie dazu mehrere Modelle mittels einer (kostenlosen) Modellierungssprache (z.B. ZIMPL/SCIP) um und analysieren Sie diese anhand von Benchmarkinstanzen. Kara et al. (2012)

Thema 11 (Parallel Drone Scheduling Traveling Salesman Problem)

Beim Parallel Drone Scheduling Traveling Salesman Problem (PDSTSP) wird die Kundennachfrage auf ein Fahrzeug und eine Flotte aus Drohnen aufgeteilt. Das Fahrzeug fährt eine einzige Auslieferungstour. Die Drohnen liefern in Pendeltouren vom Depot startend aus. Es gibt verschiedene Möglichkeiten das PDSTSP zu modellieren. Beschreiben Sie diese Modelle, setzen Sie diese mittels einer (kostenlosen) Modellierungssprache (z.B. ZIMPL/SCIP) um und analysieren Sie die verschiedenen Modelle anhand von Benchmarkinstanzen. (Mbiadou Saleu et al. 2018) und (Klein and Becker 2021)

4 Scheduling und Graphen

Thema 12 (Assembly Line Balancing)

Bei der getakteten Fließfertigung werden Arbeitsgänge zu Stationen zugeordnet, wobei Vorrangbeziehungen zwischen den Arbeitsgängen zu berücksichtigen sind. Sie stellen Varianten des Simple Assembly Line Balancing Problems (SALBP) vor und setzen mehrere Eröffnungsverfahren mittels MS-Excel um. (Scholl and Voss 1997) und (Weiss 2013)

Thema 13 (Knotenfärbungsproblem)

Gegeben sei eine Menge von Jobs, die jeweils einem Zeitslot zugeordnet werden sollen. Die Jobs können in beliebiger Reihenfolge durchgeführt werden, aber es gibt Jobs, die nicht gleichzeitig durchgeführt werden können. Dies ist ein einfaches Anwendungsbeispiel des Knotenfärbungsproblems. Der zugehörige Graph besteht aus einem Knoten für jeden Job und einer Kante für Jobs, die in Konflikt stehen. Beim Knotenfärbungsproblem sollen die Knoten eines Graphen so eingefärbt werden, dass (i) zwei Knoten, die mit einer Kante verbunden sind, unterschiedlich eingefärbt sind und (ii) die Anzahl an verwendeten Farben minimiert wird. Geben Sie einen Überblick über das Knotenfärbungsproblem und stellen Sie mehrere Modelle vor. Setzen Sie mindestens ein Modell um und vergleichen Sie unterschiedliche Strategien zur Symmetriereduktion. (Lewis 2016; Kapitel 3.1)

Thema 14 (Single Machine Scheduling)

Im Rahmen des Scheduling wird die Zuordnung von (beschränkten) Ressourcen zu Aktivitäten geplant. Scheduling-Probleme treten in vielen Bereichen wie bspw. der Produktions- und Personaleinsatzplanung, der Gestaltung von Fahr- und Stundenplänen sowie im Bereich Betriebssysteme und Datenbanktechnik auf. Beim Single-Machine-Scheduling muss eine gegebene Menge an Aufträgen mit unterschiedlichen Bearbeitungszeiten auf einer einzigen Maschine so eingeplant werden, dass ein bestimmtes Ziel wie z. B. die Summe der Fertigstellungszeiten optimiert wird. Beschreiben Sie unterschiedliche Modelle für Single-Machine-Planungsprobleme und setzen Sie diese mittels ZIMPL/SCIP um. Analysieren Sie Vor- und Nachteile der umgesetzten Modelle in einer Rechenstudie. (Keha et al. 2009)

5 Cutting und Packing

Thema 15 (Multiple Knapsack Problem)

Beim Multiple Knapsack Problem (MKP) ist eine Menge von Gegenständen mit zugehörigen Profiten und Gewichten gegeben. Im Gegensatz zum klassischen Rucksackproblem ist beim MKP eine Menge von Rucksäcken unterschiedlicher Kapazität gegeben. Ziel ist es, eine profitmaximale Teilmenge der Gegenstände zu finden, die so in die Rucksäcke gepackt werden kann, dass die Kapazität der einzelnen Rucksäcke nicht überschritten wird. Geben Sie einen Überblick über das Problem und stellen Sie Modelle bzw. Lösungsverfahren zum Finden optimaler Lösungen und oberer Schranken vor. Setzen Sie ein exaktes Modell, die zugehörige LP-Relaxation und ein weiteres, relaxiertes Modell mittels einer (kostenlosen) Modellierungssprache (z.B. ZIMPL/SCIP) um. (Kellerer et al. 2004; Kapitel 10)

Thema 16 (Cutting Stock Problem)

Beim Cutting Stock Problem sind Stücke gleicher Länge gegeben, die in kleinere Stücke geschnitten werden sollen. Ziel ist es, alle kleinen Stücke aus so wenig Ausgangsmaterial wie möglich auszuschneiden. Valério de Carvalho (1999) stellt ein Arc-flow-Modell vor. Beschreiben Sie das Problem und Modell(e) und setzen Sie das Modell von Valério de Carvalho mittels einer (kostenlosen) Modellierungssprache (z.B. ZIMPL/SCIP) um.

6 Produktionsplanung

Thema 17 (Dynamische Losgrößenplanung)

Im Vergleich zum klassischen Losgrößenproblem (Lot-Sizing Problem) geht das dynamische Losgrößenproblem von einer zeitlich veränderlichen (dynamischen) Nachfrage aus. Beschreiben Sie das vorliegende Problem und setzen Sie ausgewählte Heuristiken sowie den Algorithmus von Wagner-Whitin mittels MS Excel um. Vergleichen Sie Ihre Ergebnisse anhand von Beispielinstanzen. (Baciarello et al. 2013)

Thema 18 (Dynamische Losgrößenplanung mit Nachfragezeitfenstern)

Das Dynamic Lot-Sizing Problem with Demand Time Windows ist eine Erweiterung des klassischen Dynamic Lot-Sizing Problems, bei dem Kunden ein Zeitintervall für die Lieferung angeben. Beschreiben Sie diese Problemvariante und setzen Sie das vorgestellte Modell z.B. mit ZIMPL/SCIP um. Untersuchen Sie außerdem die Sensitivität bezüglich verschiedener Parameter in einer Rechenstudie und analysieren Sie die Ergebnisse. (Lee et al. 2001)

Thema 19 (Job Grouping Problem)

Das Job Grouping Problem (JGP) beschäftigt sich mit der Zuordnung von Jobs, für die bestimmte Werkzeuge benötigt werden, zu flexiblen, identischen Maschinen, sodass die Anzahl der eingesetzten Maschinen minimiert wird. Da es sich um identische Maschinen handelt, können Symmetrie-Effekte die Optimierung solcher Probleme erschweren. Beschreiben und implementieren Sie verschiedene Modelle des JGP mithilfe von z.B. ZIMPL/SCIP und vergleichen Sie diese anhand von Instanzen aus der Literatur oder selbst erstellter Instanzen im Rahmen einer Rechenstudie. (Jans and Desrosiers 2013)

7 Sonstiges

Thema 20 (Order Picking)

Bei der Kommissionierung geht es um die auftragsgerechte Zusammenstellung von Waren aus einem Lager. Um die zurückgelegte Strecke der Kommissionierer*innen gering zu halten, werden in der Praxis oft heuristische Routingstrategien verwendet. Setzen Sie ausgewählte Strategien in MS Excel um und vergleichen Sie Ihre Ergebnisse anhand von Beispielinstanzen (Petersen 1997).

Thema 21 (Warteschlangenmodelle im Callcenter-Management)

 $\begin{tabular}{ll} \textbf{Voraussetzung:} & Programmierkenntnisse (z.B.~R) \\ \end{tabular}$

Die Aufgabe besteht in der Umsetzung einiger nicht Standardsysteme in R. Sie simulieren die Kennzahlen der Systeme und diskutieren die Aussagekraft unterschiedlicher Systeme und den Tradeoff zwischen wichtigen Kennzahlen. (Garnett et al. 2002)

Thema 22 (Soziale Netzwerke: Relaxationen des Cliquen-Konzepts)

Bei der Analyse von (sozialen) Netzwerken spielen Cliquen, d.h. vollständige Teilgraphen, eine herausgehobene Rolle. Oftmals ist die Bedingung der Vollständigkeit, die an eine Clique gestellt wird, zu streng. Daher wurden verschiedene Relaxationen des Cliquenbegriffs in der Literatur eingeführt. Stellen Sie anhand des Artikels von Pattillo et al. (2013) die Konzepte relaxierter Cliquen vor und setzen Sie mehrere Modelle beispielhaft in der Modellierungssprache ZIMPL um.

Literatur

- Tamer F Abdelmaguid. An efficient mixed integer linear programming model for the minimum spanning tree problem. *Mathematics*, 6(10):183, 2018. doi: 10.3390/math6100183.
- Veena Adlakha and Krzysztof Kowalski. A simple heuristic for solving small fixed-charge transportation problems. *Omega*, 31(3):205–211, 2003. doi: 10.1016/S0305-0483(03)00025-2.
- Charles Hal Aikens. Facility location models for distribution planning. European Journal of Operational Research, 22(3):263 279, 1985. doi: 10.1016/0377-2217(85)90246-2.
- Luca Baciarello, Marco D'Avino, Riccardo Onori, and Massimiliano M. Schiraldi. Lot sizing heuristics performance. *International Journal of Engineering Business Management*, 5:6, 2013. doi: 10.5772/56004.
- Roberto Baldacci, Eleni Hadjiconstantinou, and Aristide Mingozzi. An exact algorithm for the capacitated vehicle routing problem based on a two-commodity network flow formulation. *Operations Research*, 52:723–738, 2004. doi: 10.1287/opre.1040.0111.
- Sanjeeb Dash, Oktay Günlük, Andrea Lodi, and Andrea Tramontani. A time bucket formulation for the traveling salesman problem with time windows. *INFORMS Journal on Computing*, 24(1):132–147, 2012. doi: 10.1287/ijoc.1100.0432.
- Sourour Elloumi, Martine Labbé, and Yves Pochet. A new formulation and resolution method for the p-Center problem. INFORMS Journal on Computing, 16(1):84–94, 2004. doi: 10.1287/ijoc.1030.0028.
- Ofer Garnett, Avishai Mandelbaum, and Martin Reiman. Designing a call center with impatient customers. *Manufacturing & Service Operations Management*, 4(3):208–227, 2002. doi: 10.1287/msom.4.3. 208.7753.
- Pierre Hansen, Yuri Kochetov, and Nenad Mladenović. Lower bounds for the uncapacitated facility location problem with user preferences. In V. Eremeev (ed.), editor, *Proceedings of 2nd International Workshop Discrete Optimization Methods in Production and Logistics*, pages 50–55, January 2004.
- Raf Jans and Jacques Desrosiers. Efficient symmetry breaking formulations for the job grouping problem. Computers & Operations Research, 40(4):1132–1142, 2013. doi: 10.1016/j.cor.2012.11.017.
- Imdat Kara, Huseyin Guden, and Ozge N Koc. New formulations for the generalized traveling salesman problem. In *Proceedings of the 6th International Conference on Applied Mathematics, Simulation, Modelling, ASM*, volume 12, pages 60–65, 2012.
- Ahmet B Keha, Ketan Khowala, and John W Fowler. Mixed integer programming formulations for single machine scheduling problems. *Computers & Industrial Engineering*, 56(1):357–367, 2009. doi: 10.1016/j.cie.2008.06.008.
- Hans Kellerer, Ulrich Pferschy, and David Pisinger. *Knapsack Problems*. Springer, Berlin, 2004. ISBN 978-3540402862.
- Tobias Klein and Peter Becker. Exact separation algorithms for the parallel drone scheduling traveling salesman problem. In *Computational Logistics: 12th International Conference, ICCL 2021, Enschede, The Netherlands, September 27–29, 2021, Proceedings 12*, pages 377–392. Springer, 2021. doi: 10.1007/978-3-030-87672-2 25.

- André Langevin, Martin Desrochers, Jacques Desrosiers, Sylvie Gélinas, and Fraňlois Soumis. A two-commodity flow formulation for the traveling salesman and the makespan problems with time windows. *Networks*, 23(7):631–640, 1993. doi: 10.1002/net.3230230706.
- Chung-Yee Lee, Sila Çetinkaya, and Albert P. M. Wagelmans. A dynamic lot-sizing model with demand time windows. *Management Science*, 47(10):1384–1395, 2001. doi: 10.1287/mnsc.47.10.1384.
- Rhyd M. R. Lewis. A Guide to Graph Colouring: Algorithms and Applications. Springer, Cham, 1 edition, 2016. ISBN 978-3319257280. doi: 10.1007/978-3-319-25730-3.
- Raïssa G Mbiadou Saleu, Laurent Deroussi, Dominique Feillet, Nathalie Grangeon, and Alain Quilliot. An iterative two-step heuristic for the parallel drone scheduling traveling salesman problem. *Networks*, 72(4):459–474, 2018. doi: 10.1002/net.21846.
- Jeffrey Pattillo, Nataly Youssef, and Sergiy Butenko. On clique relaxation models in network analysis. European Journal of Operational Research, 226(1):9–18, 2013. doi: 10.1016/j.ejor.2012.10.021.
- Charles G. Petersen. An evaluation of order picking routeing policies. *International Journal of Operations & Production Management*, 17(11):1098–1111, 1997. doi: 10.1108/01443579710177860.
- David Sayah and Stefan Irnich. A new compact formulation for the discrete p-dispersion problem. European Journal of Operational Research, 256(1):62–67, 2017. ISSN 0377-2217. doi: https://doi.org/10.1016/j.ejor.2016.06.036.
- Armin Scholl and Stefan Voss. Simple assembly line balancing heuristic approaches. *Journal of Heuristics*, 2(3):217–244, 1997. doi: 10.1007/bf00127358.
- Leonardo Taccari. Integer programming formulations for the elementary shortest path problem. *European Journal of Operational Research*, 252(1):122–130, 2016. doi: 10.1016/j.ejor.2016.01.003.
- Jose M. Valério de Carvalho. Exact solution of bin-packing problems using column generation and branch-and-bound. *Annals of Operations Research*, 86:629–659, 1999. doi: 10.1023/a:1018952112615.
- Wim Vancroonenburg, Federico Della Croce, Dries Goossens, and Frits C.R. Spieksma. The red-blue transportation problem. *European Journal of Operational Research*, 237(3):814–823, 2014. doi: 10. 1016/j.ejor.2014.02.055.
- Howard J. Weiss. Teaching note implementing line balancing heuristics in spreadsheets. *INFORMS Transactions on Education*, 13(2):114–125, January 2013. doi: 10.1287/ited.1120.0096.