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Abstract

The vehicle routing problem with drones and time windows (VRP-DTW) is a generalization of the vehicle
routing problem with drones, in which each customer is associated with a predefined time window that
specifies the delivery time for the customer’s shipment. Most literature on the VRP-DTW considers the
minimization of the total routing cost as objective function, which is the standard objective for vehicle
routing problems. However, the presence of time windows gives rise to the analysis of alternative objective
functions, such as minimizing the completion time or route duration. We present a branch-price-and-cut
algorithm to solve the VRP-DTW with the objective to minimize the sum of route duration over all routes.
The column-generation pricing problem is modeled as a shortest path problem with resource constraints
(SPPRC) that can handle the implications of non-robust cuts and branching decisions. The SPPRC is
solved using an effective dynamic programming labeling algorithm on an artificial network. Non-robust
capacity cuts and dynamic neighborhood extensions are used to strengthen the linear relaxation. In a
computational study, we investigate the algorithmic components and show that the proposed algorithm can
solve instances with up to 30 customers to proven optimality within two hours of computation time. The
gap over all considered instances is less than 0.5% on average. We also present managerial insights that
analyze the impact of combined truck-and-drone routing compared to classical truck routing, and show that
minimizing the route duration leads to considerable time savings compared to minimizing the completion
time.
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1. Introduction

In synchronized truck-and-drone routing problems, one or several trucks are equipped with a single
or multiple unmanned aerial vehicles (UAVs, also referred to as drones) to fulfill a set of transportation
requests. Drones can usually reach customers faster, easier, and more environmentally friendly than a truck,
but they have the disadvantages of a limited flying range and payload, i.e., they cannot serve long-haul
transportation requests or deliver heavy packages (Joerss et al., 2016; Goodchild and Toy, 2018). However,
the combination of two different types of vehicles with complementary characteristics allows the reduction of
delivery times and transportation costs, can simplify access to certain customers, and increases the efficiency
of performing transportation requests (Wang et al., 2017; Poikonen et al., 2017; Carlsson and Song, 2018).
Thus, this topic attracts the research community (Otto et al., 2018; Chung et al., 2020; Macrina et al., 2020;
Moshref-Javadi and Winkenbach, 2021; Madani and Ndiaye, 2022) as well as several delivery companies such
as Amazon or UPS (Amazon Prime Air, 2023; Federal Aviation Administraion, 2023).

The (basic) vehicle routing problem with drones (VRP-D) is one example of a synchronized truck-and-
drone routing problem. Herein, a fleet of homogeneous trucks –each equipped with a single drone– is
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stationed at a depot and can be used to serve a given set of customers. Therefore, a truck and its drone can
operate either together or separately. When operating together, the drone is inside or on top of the truck,
and the truck is responsible for serving the customer. Whenever it is beneficial, the truck can release its
drone (at a customer location or the depot) so that both vehicles can serve customers in parallel. While
the drone is airborne, the truck continues its route alone to serve one or several customers. Meanwhile,
the drone serves exactly one customer and returns to the truck. In the basic version, it is assumed that
the assignment of trucks and drones is fixed, i.e., a drone always has to return to the truck from which it
was released. Additionally, a drone is not allowed to loop, i.e., the truck must continue its journey while
the drone is airborne. The VRP-D aims to find a cost-minimal set of truck-and-drone routes that start and
end at the depot, visit each customer exactly once, and respect the capacity of the truck and drone on each
route (Schmidt et al., 2023). The basic VRP-D can be generalized in several ways, e.g., by relaxing the
loop constraint (Zhou et al., 2023), by relaxing the fixed assignment of trucks and drones (Bakir and Tiniç,
2020), or by limiting the flying range of the drones (Zhen et al., 2023).

In this paper, we consider the vehicle routing problem with drones and time windows (VRP-DTW), which
is also a generalization of the VRP-D where the service at each customer must start within a predefined
time interval, called a time window. An additional time window at the depot spans the planning horizon
and limits the departure and arrival times for truck and drone. Time windows are present in many routing
problems, as they can represent real-life situations such as working hours, opening hours, or agreed delivery
times. The number of publications concerning a routing problem with time windows is huge, but there are
only a few publications considering time windows in a VRP-D variant. Almost all of these publications
aim at solving the VRP-DTW with the objective to minimize the total routing cost, including different cost
components such as fixed and variable costs for trucks and/or drones, costs for waiting times, or CO2 emis-
sions. However, the introduction of time windows allows the investigation of alternative objective functions
such as minimizing the completion time or the route duration (Savelsbergh, 1992). When considering the
completion time of a route, truck and drone leave the depot directly upon opening the time window to start
the delivery process, generating an as-early-as-possible schedule. In contrast, when considering the route
duration, the departure time at the depot is not fixed. Both types of vehicles can depart at any time within
the depot’s time window to deliver the customers, creating an as-late-as-possible schedule. Minimizing the
completion time may not always be appropriate for truck-and-drone routing, as it may result in long waiting
times at customer locations. Especially, if drones have a limited flying range (in the sense that they can-
not be separated from the truck for a specific amount of time) long waiting times can make a drone flight
infeasible.

We develop a BPC algorithm to solve the VRP-DTW with the objective to minimize the sum of route
duration over all routes. Our BPC algorithm is based on a set-partitioning formulation, as usually done
in BPC approaches for vehicle routing problems. The column-generation pricing problem is modeled as a
shortest path problem with resource constraints (SPPRC, Irnich and Desaulniers, 2005) and solved by means
of a dynamic programming labeling algorithm. The labeling algorithm runs on a multi-digraph, originally
proposed by Roberti and Ruthmair (2021), in which vertices represent possible truck-and-drone positions
and arcs represent potential movements of truck and drone. To track Pareto-optimal schedules, we use
resources that are pairwise interdependent and coupled with a max-term (Irnich, 2008; Tilk and Irnich,
2017).

Our contributions are as follows:
• To the best of our knowledge, we developed the first exact algorithm to solve the VRP-DTW with the

objective to minimize the sum of route duration over all routes contained in a solution. We equip our
algorithm with non-robust capacity cuts (Baldacci et al., 2008) and dynamic neighborhood extensions
(Roberti and Mingozzi, 2014; Bode and Irnich, 2015) to strengthen the linear relaxation of the set-
partitioning formulation. Integer solutions are obtained by means of a four-stage branching strategy.
Our SPPRC pricing problem provides the flexibility to handle all implications of the non-robust cuts
and branching decisions.

• Synchronizing truck and drone to obtain a route with minimal duration is a non-trivial task. Neither
the as-late-as-possible schedule nor the as-early-as-possible schedule are appropriate. We propose a
method on how to properly synchronize both types of vehicles to obtain a route with minimal duration.
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• We present an extensive computational study on newly generated instances that evaluates the algorith-
mic components and demonstrates the efficacy of the overall BPC algorithm. Finally, our algorithm is
able to solve instances with up to 30 customers to proven optimality within a time limit of two hours.
The remaining gap over all instances is less than 0.5% on average.

• We also provide managerial insights that analyze the impact of combined truck-and-drone routing
compared to classical truck routing, as well as the impact of different types of drones that differ only
in their flying range. In addition, we analyze the time savings that can be achieved by minimizing the
route duration rather than the completion time.

The remainder of this paper is organized as follows: At first, we provide a brief overview of the related
scientific literature in Section 2. Afterwards, we formally define the VRP-DTW in Section 3. Section 4
presents the BPC algorithm to solve the VRP-DTW with a specific focus on the solution of the pricing
problem. Computational results and managerial insights are presented in Section 5. Finally, in Section 6,
we conclude and suggest future research directions.

2. Literature Review

Synchronized truck-and-drone routing is a popular research topic. The review articles by Otto et al.
(2018); Chung et al. (2020); Macrina et al. (2020); Moshref-Javadi and Winkenbach (2021); Madani and
Ndiaye (2022) show the huge amount of publications in the last years and new publications continue to
appear. It would go far beyond the scope of this paper to list them all. Therefore, we focus only on
publications that consider a variant of the VRP-DTW. For a review of VRP-D variants, we refer the reader
to Schmidt et al. (2023), and for a more general overview of (synchronized) truck-and-drone routing, we
refer to one of the review articles mentioned above.

The first work considering time windows in a VRP-D variant was published by Pugliese and Guerriero in
2017. The authors developed a mixed-integer linear program (MIP) to solve the VRP-DTW with multiple
drones per truck with the objective of minimizing the total routing cost. The commercial MIP solver
CPLEX can solve small instances of five and 10 customers in a matter of seconds. Their work was later
extended by Pugliese et al. (2020), in which the authors investigated several variants of the problem, such
as relaxed time window constraints for each customer served by a drone, or a limit on the number of drones
associated with each truck. In addition to a MIP formulation, the authors developed a heuristic algorithm
that embeds a two-phase strategy in a multi-start framework. The MIP can be solved to proven optimality
for instances with up to 15 customers within a computation time of 30 minutes. The multi-start heuristic
can find almost all optimal solutions obtained by the MIP in a considerably shorter computation time. In
addition, large instances with up to 100 customers are solved heuristically. In a second follow-up paper,
Pugliese et al. (2021) focused on different energy consumption functions in case of adverse weather conditions
while a drone is airborne. They proposed a Benders’ decomposition approach to solve the VRP-DTW under
uncertain energy consumption and presented results on instances with 10 and 15 customers. Coindreau
et al. (2021) investigated a version of the VRP-DTW that also allows a drone to loop. They developed a
MIP formulation and an adaptive large neighborhood search (ALNS) to minimize the total routing cost.
CPLEX solves instances with up to 20 customers within a time limit of 10 hours, while the proposed ALNS
solves instances with up to 100 customers in less than a minute of computation time. In the publication
by Das et al. (2021), each customer can have multiple, prioritized time windows that are assumed to be
soft. They developed an ant colony optimization heuristic and a genetic algorithm, both aimed at solving a
multi-objective function. More precise, the heuristics aim to minimize the total routing cost and maximize
the customer service level in terms of on-time deliveries. Both heuristics can solve instances with 25 and 50
customers from the Solomon benchmark set (Solomon, 1987) in less than 10 minutes of computation time.
Kuo et al. (2022) presented another MIP formulation and a variable neighborhood search (VNS) to solve the
VRP-DTW with the objective to minimize the total routing cost. The Gurobi MIP solver solves instances
with a maximum of 10 customers within a computation time of two hours. The VNS is used to tackle larger
instances with up to 50 customers within a time limit of 10 minutes.

To the best of our knowledge, Li and Wang (2022) developed the first exact BPC algorithm to solve
the VRP-DTW with the objective to minimize the total routing cost. It solves instances with up to 50
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customers to proven optimality within a time limit of 20 hours. They also combine the BPC algorithm with
an ALNS to tackle large-sized instances with up to 100 customers. The time limit for the combined BPC
algorithm is set to 24 hours. Another exact algorithm was proposed by Yin et al. (2023). They consider a
variant of the VRP-DTW in which the drone is allowed to serve more than one customer, as long as it does
not exceed its capacity or maximum flying range. They developed a full-fledged BPC algorithm that uses a
bidirectional labeling algorithm to solve the pricing problem to minimize the total routing cost. Instances
with up to 35(45) customers can be solved within a computation time of two(three) hours.

Li et al. (2020) and Zhou et al. (2023) studied another variant of the VRP-DTW, in which each truck
is equipped with more than one drone. Whenever the truck releases one or several drones, it must wait
until all the launched drones have returned before it can serve the next customer. In such a setting, the
synchronization constraints between a truck and its drones are different compared to all VRP-DTW variants
mentioned above. Li et al. (2020) presented a MIP formulation together with an ALNS. Small instances
with up to 12 customers can be solved with CPLEX within four hours of computation time. For the same
set of instances, the proposed ALNS finds the optimal solution in less than 10 seconds. Additionally, the
authors run their ALNS algorithm on instances with up to 100 customers and obtain solutions in less than
1500 seconds. Zhou et al. (2023) developed a BPC algorithm that uses a bidirectional labeling algorithm to
solve the pricing problem. Instances with up to 35 customers can be solved to proven optimality within a
time limit of three hours.

The works of Chen et al. (2021a) and Chen et al. (2021b) consider delivery robots instead of drones. A
matheuristic (Chen et al., 2021b) and an ALNS (Chen et al., 2021a) were developed to solve the problems
heuristically.

3. The Vehicle Routing Problem with Drones and Time Windows

The VRP-DTW is defined on a complete directed graph G = (V,A) with vertex set V and arc set A.
The vertex set V = N ∪ {0, 0′} comprises the set of customers N and the start and end depot {0, 0′}.
Associated with each customer v ∈ N is an integer demand qv > 0 and a time window [ev, lv] in which
the service of length σv > 0 has to start. We consider the time windows to be hard, i.e., if a vehicle
(independent of its type) arrives earlier than ev to serve customer v ∈ N the start of the service is delayed
to time ev. It is not allowed to start the service later than lv. The time windows at the start and end
depot [e0, l0] = [e0′ , l0′ ] represent the planning horizon. We assume that there is no service and demand at
the depot, i.e., q0 = q0′ = σ0 = σ0′ = 0. The depot houses a homogeneous fleet of K trucks. Each truck
has a capacity Q and is equipped with a single drone. The capacity of a drone is limited by Qdr and in the
sense that it can only serve one customer before returning to the truck. Each drone has a maximum flying
range δ, i.e., the drone cannot remain airborne for more than δ time units. We assume that a drone always
waits on the ground rather than hovering, so there is no energy consumption that affects its flying range.
Both types of vehicles can be used to serve the set of customers. For this purpose, each truck and its drone
can operate together or separately. To operate together, the drone is either inside or on top of the truck
while the truck serves the customer. To operate separately, the truck can release a drone at any customer
location (or at the start depot) v ∈ N ∪ {0}. While the drone is airborne, the truck continues its journey
alone to serve one or several customers. After serving exactly one customer, the drone must return to the
same truck from which it was released, at the truck’s current location w ∈ N ∪{0′} with w ̸= v. We assume
that take-off and landing of a drone is completely autonomous and does not require any interaction from the
truck driver. This allows for take-off and landing at any time, even while the truck is serving a customer.
In addition, take-off and landing are independent of the customer time windows [ev, lv] and [ew, lw] at the
release and landing positions v and w with w ̸= v, as they are only relevant for the truck serving that
customers. The drone can take off as soon as the truck arrives at a customer, without waiting for the truck
to finish its service or for the time window to open.

Associated with each arc (v, w) ∈ A is a travel time tvw > 0 for the truck and tdr
vw > 0 for the drone. It

is assumed that the triangle inequality holds for all travel times tvw and tdr
vw. Times for take-off and landing

are considered to be negligible.
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A route r = (P,D) is defined as a pair of a truck path P and a sequence of (possibly empty) drone sub-
paths D together with corresponding time schedules S = (T (P ), U(D)). A truck path P = (0, v1, . . . , vm, 0′)
with m ≥ 1 is a path in G, starting at the start depot 0, visiting a sequence of customers N(P ) =
{v1, . . . , vm}, N(P ) ⊆ N and returning to the end depot 0′. The drone subpaths D = (D1, . . . , Db) specify
unique drone flights along the truck path P . Each drone subpath Ds = ⟨vs, ks, ws⟩ for all s ∈ {1, . . . , b} is
represented by a triplet: at vs ∈ {0} ∪N the drone leaves the truck, ks ∈ N specifies the customer that is
served by the drone, and ws ∈ N ∪ {0′} indicates where truck and drone meet each other again.
For each drone subpath s, we define two indices gs, hs ∈ {0, 1, . . . ,m,m + 1} with gs < hs. For conve-
nience, the set I(s) = {gs, gs + 1, . . . , hs − 1} defines the indices of the truck path P where the drone
leaves the truck gs and the truck serves a customer alone gs + 1, . . . , hs − 1. Note that the position
where the drone returns to the truck is not included. For two drone subpaths s, s′ ∈ {1, . . . , b} with
s < s′ : gs < hs ≤ gs′ < hs′ . For each truck-and-drone path, there exist a corresponding time schedule.
The schedule T (P ) = (T0, T1, . . . , Tm, T0′) with m ≥ 1 represents the service start times at each customer
N(P ) together with the departure and arrival times at the start and end depot, respectively. Additionally,
there exists a time schedule U(D) = (U(D1), . . . , U(Db)) for each drone subpath. Each drone time schedule
U(Ds) = ⟨Uvs , Uks , Uws⟩ for all s ∈ {1, . . . , b} is represented by an additional triplet: the drone takes off
at time Uvs from its current position vs, the service at customer ks starts at Uks , and the drone meets the
truck at time Uws . As a reminder, Uvs and Uws are not restricted by the time windows of both customers
vs and ws.

A route r = (P,D) is elementary if all elements in N(P ) and all ks for all s ∈ {1, . . . , b} are different
and it is feasible if the following conditions hold:

i)
∑m

p=1 qvp +
∑b

p=s qks ≤ Q;

ii) qks ≤ Qdr for all s ∈ {1, . . . , b};

iii) Tp ∈ [evp , lvp ] for all p ∈ {0, . . . ,m+ 1};

iv) Uks ∈ [eks , lks ] for all s ∈ {1, . . . , b};

v) Tp−1 + σp−1 + tvp−1,vp ≤ Tp for all p ∈ {1, . . . ,m+ 1};

vi) Uvs + tdr
vs,ks ≤ Uks and Uks + σks + tdr

ks,ws ≤ Uws for all s ∈ {1, . . . , b};

vii) tdr
vs,ks + tdr

ks,ws ≤ δ for all s ∈ {1, . . . , b};

viii) I(s) ∩ I(s′) = ∅ for 1 ≤ s < s′ ≤ b with b ≥ 2;

ix) Tgs−1
+ σgs−1

+ tgs−1gs ≤ Uvs for all s ∈ {1, . . . , b};

x) Uvs ≤ Tgs+1
− tgsgs+1

for all s ∈ {1, . . . , b};

xi) Uws ≤ Tvh+1
− tvh,vh+1

for all s ∈ {1, . . . , b};

These conditions ensure that each route respects the capacity of the truck and the drone (i, ii), the
customer time windows (iii, iv), and travel times (v, vi). Condition (vii) ensures that a drone is never
airborne longer than allowed. Additionally, constraints (viii) – (xi) ensure a synchronization of truck and
drone in space (viii) and time (ix – xi).

The route duration is defined by the time span between the earliest departure x of truck or drone
at the start depot, i.e., x = min(T0, Uv1), and the arrival of the latest vehicle at the end depot, i.e.,
y = max(T0′ , Uwd). Therefore, the duration of a route r is defined as dr = (y − x).

The VRP-DTW asks for a set Ω of at most K feasible routes such that each customer is served by a
single vehicle and the summarized duration over all routes

∑
r∈Ω dr is minimized.
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Example 1. In the following, we consider a feasible route r = (P,D) with P = (0, 1, 2, 3, 5, 0′) and
D = (⟨2, 4, 3⟩, ⟨3, 6, 0′⟩). Time windows [ev, lv] along with travel times tvw and tdrvw are given in Table 1
(columns 2+3 and 7+8). Further, we assume a demand qv = 2 for all v ∈ N = {1, . . . , 6} and a capacity
Q = 12 for the truck. The drone’s capacity is set to Qdr = 5 and its flying range to δ = 5 so that each
customer can be served by a drone. The service time for each customer v ∈ N is set to σv = 1.

P [ev , lv ] tv,v+1 T (P )alap T (P )aeap D [ev , lv ] tdr
v,v+1 U(D)alap U(D)aeap

0 [0, 25] 1 5 0 2 — 2 10 7
1 [3, 6] 3 6 3 4 [10, 12] 3 12 10
2 [8, 10] 3 10 8 3 — — 16 14
3 [12, 14] 3 14 12
5 [17, 20] 3 19 17 3 — 2 16 14
0′ [0, 25] — 23 21 6 [18, 20] 3 18 18

0′ — — 22 22

Table 1: VRP-DTW instance with a feasible solution.

The columns T (P )alap and U(D)alap show the truck-and-drone schedules for the given route according
to an as-late-as-possible schedule. The truck leaves the depot at time 5 for customer 1. It arrives there
at time 6, which is the latest possible time to start service. After completing the service, the truck drives
towards customer 2, where it arrives at time 10, which is again the latest possible time to start the service.
Now, truck and drone separate. The truck continues its journey alone to customer 3, arrives at time 14
and performs service until time 15. In parallel, the drone takes off from customer 2, serves customer 4,
and meets the truck at customer 3 at time 16. Note that the drone is allowed to meet the truck later than
l3 = 14 because it is not restricted to that time window. The truck has to wait for the drone, before they
separate again. The truck continues serving customer 5 at time 19 and arrives at the depot at time 23.
Meanwhile, the drone serves customer 6 and arrives at the depot 0′ at time 22. The duration of this route
is max(23, 22)− 5 = 18.

In contrast, an as-early-as-possible schedule can be determined as follows: The truck leaves the depot
immediately at time e0 = 0 and arrives at customer 1 at time 1. It must wait until time 3 to start service.
The truck then continues to customer 2, where it has to wait for one time unit to start service. While waiting
for service, the drone is permitted to take off to customer 4. Note that the drone is allowed to do so because
it is not restricted to the time window at customer 2. Starting at time 7, serving customer 4 at time 10
(including one unit of waiting time), the drone lands at customer 3 at time 14. While the drone is airborne,
the truck serves customers 2 and 3 and waits for one time for the drone to arrive. After both vehicles are
synchronized, the truck continues to customer 5 and 0′, where it arrives at time 21. The drone arrives
at customer 6 at time 16 and has to wait for 2 time units to start service at time 18. After serving the
customer, the drone reaches the depot at time 22. The completion time, according to an as-early-as-possible
schedule is max(21, 22) = 22. The example shows, that starting later than e0 reduces the delivery time by 4
time units, which is a time saving of approx. 18%.

4. Branch-Price-and-Cut Algorithm

This section describes the BPC algorithm for the solution of the VRP-DTW. Section 4.1 presents a
straightforward set-partitioning formulation that will be used as master problem (MP) in the column-
generation process. Section 4.2 discusses the modeling and solution of the column-generation subproblem.
In particular, we present the underlying network in Section 4.2.1, discuss the labeling algorithm in Sec-
tions 4.2.2 and 4.2.3, and present effective dominance rules in Section 4.3. Afterwards, Section 4.4 shows
implemented acceleration techniques for the overall BPC algorithm. Valid inequalities used to strengthen
the linear relaxation of the MP are presented in Section 4.5. Finally, Section 4.6 discusses the branching
rules to obtain integer solutions.
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4.1. Route-based Formulation
Let Ω denote the set of all VRP-DTW-routes that are feasible with respect to the capacity, time window,

and synchronization constraints. Further, let dr denote the duration of a route r as defined in Section 3 and
λr be a binary variable equal to 1 if and only if the route r ∈ Ω is selected in the solution. The coefficient
avr indicates the number of times customer v ∈ N is served by route r. The VRP-DTW can be stated as
follows:

min
∑
r∈Ω

drλr (1a)

subject to
∑
r∈Ω

avrλr = 1 ∀v ∈ N (1b)

L ≤
∑
r∈Ω

λr ≤ K (1c)

λr ∈ {0, 1} ∀r ∈ Ω (1d)

The objective function (1a) minimizes the summarized duration over all routes. The set-partitioning
constraints (1b) ensure that each customer is served exactly once. Due to (1c), the number of trucks in use
ranges between a lower bound (L, see Section 4.6) and the fleet size K. The domain of all route variables
is specified in (1d).

The model defined by (1) contains a huge number of feasible routes so that it is almost impossible (and
not necessary) to generate all such routes beforehand. Instead, the linear relaxation of this model, i.e.,
λr ≥ 0, is solved by means of column generation (Desaulniers et al., 2005). Its basic idea is to work with a
restricted master problem (RMP) that considers only a (small) subset of feasible routes. It can be obtained
by replacing Ω with a subset Ω̄ ⊂ Ω of generated routes. Missing routes are generated by solving one or
several subproblems, also called pricing problems. A solution of the linear relaxation of the MP can be
obtained by iteratively re-optimizing the RMP and solving the pricing problem(s), until no more beneficial
routes, i.e., routes with negative reduced cost, can be added to the RMP.

4.2. Column Generation
The column-generation pricing problem aims to generate beneficial routes or to prove that no such route

exists. A route is beneficial if it is feasible and its reduced cost c̃r is negative. Let (πv)v∈N denote the dual
prices of the set-partitioning constraints (1b) and let µ be the dual price of fleet-size constraint (1c). The
reduced cost of an arbitrary route r ∈ Ω can be calculated as

c̃r = dr −
∑
v∈N

avrπv − µ.

This pricing problem can be modeled as shortest path problem with resource constraints (SPPRC, Irnich and
Desaulniers, 2005) and solved with a labeling algorithm.

4.2.1. Artificial Network
We run our labeling algorithm on an artificial network originally introduced by Roberti and Ruthmair

(2021) to solve the traveling salesman problem with drone (TSP-D). The work by Schmidt et al. (2023)
shows that this network is also suitable to solve the multiple-vehicle version of this problem, the VRP-D.
For the sake of completeness, we explain the most important characteristics of this network and refer the
reader to Roberti and Ruthmair (2021) or Schmidt et al. (2023) for further details. From now on, we stay
close to the notation used in Schmidt et al. (2023).

The artificial network N = (W,A) contains a set of vertices W and arcs A. The vertex set

W = {(0, 0) ∪ ({0} ∪N)× (N ∪ {0′}) ∪ (0′, 0′)} ⊂ V × V
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represents all possible truck-and-drone positions. Each vertex i = (itr, idr) ∈ W contains two information:
the current truck position itr and the current drone position idr.

The arc set A represents movements of truck and drone between two vertices i = (itr, idr) and j =
(jtr, jdr) with i, j ∈ W, i ̸= j together with an (possible) additional service by the drone, denoted by
k ∈ Ndr = {v ∈ N : qv ≤ Qdr} ∪ {⊥}, where ⊥ represents that no feasible service can be performed.
Since the artificial network is a directed multi-graph, each arc A can be uniquely described by a triplet
[i, j, k] = [(itr, idr), (jtr, jdr), k]. All arcs of the artificial network N can be divided into three disjoint
categories:

(i) together arcs
Atog =

{
[i, j,⊥] ∈ W ×W × {⊥} : itr = idr ̸= jtr = jdr}

represent that truck and drone are moving together from itr = idr to a new position jtr = jdr;

(ii) truck alone arcs

Aalone =
{
[i, j,⊥] ∈ W ×W × {⊥} : idr = jdr and itr ̸= jtr and idr ̸= jtr}

represent movements of the truck from customer itr to another customer jtr while the drone is airborne
(release position idr = jdr); and

(iii) drone arcs

Adrone =
{
[i, j, k] ∈ W ×W ×Ndr : itr = jtr = jdr ̸= idr and k /∈ {idr, itr,⊥}

}
represent drone movements. Here, the drone starts from its release position idr to serve customer k
and meets the truck at the truck’s current position jtr = jdr ̸= idr.

Every path in N , starting at (0, 0), visiting a sequence of vertices, and ending at (0′, 0′) represents a
joint truck-and-drone route. Note that this route is not necessarily elementary or feasible. The labeling
algorithm presented in Section 4.2.2 ensures final elementary and feasibility.

Pre-Processing. Before running the labeling algorithm on N , the graph can be pre-processed by removing
all capacity and time window infeasible arcs that cannot be part of a feasible solution. First, if customers i
and j are both served by a truck, we check if serving customer j after customer i is feasible with respect to
their time windows. Otherwise the arc [i, j,⊥] can be eliminated from A so that

Atog ⊂ {[i, j,⊥] ∈ W ×W × {⊥} : eitr + σitr + titrjtr ≤ ljtr} and

Aalone ⊂ {[i, j,⊥] ∈ W ×W × {⊥} : eitr + σitr + titrjtr ≤ ljtr} .

Unfortunately, it is not possible to eliminate drone arcs in the same way, since the drone is allowed to start
earlier than eidr at its release position idr. Second, if the demand of all customers along an arc [i, j, k] ∈ A
is greater than the truck’s capacity, the arc can be eliminated due to capacity restrictions, i.e.,

Atog ⊂ {[i, j,⊥] ∈ W ×W × {⊥} : qitr + qjtr ≤ Q} ,

Aalone ⊂ {[i, j,⊥] ∈ W ×W × {⊥} : qitr + qjtr ≤ Q} , and

Adrone ⊂
{
[i, j, k] ∈ W ×W ×Ndr : qitr + qjtr + qk ≤ Q

}
.

In addition, all drone arcs that do not respect the drone’s flying range δ can also be eliminated, i.e.,

Adrone ⊂
{
[i, j, k] ∈ W ×W ×Ndr : tdr

idr,k + tdr
k,jdr ≤ δ

}
.
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4.2.2. Labeling Algorithm
In our labeling algorithm for the VRP-DTW, each label Li represents a partial path Pi = ((0, 0), . . . , i =

(itr, idr)) in N that starts at the depot (0, 0) and ends at some artificial vertex i = (itr, idr) ∈ N . Each
element stored in a label is called an attribute Ri and represents the resource consumption along the partial
path. Starting from an initial label L0 at the depot 0 = (0, 0), a labeling algorithm propagates labels toward
the depot (0′, 0′) over all three types of arcs A = Atog ∪Aalone ∪Adrone with the help of resource extension
functions (REFs, Irnich, 2008). To avoid enumerating all feasible paths, some labels can be eliminated by a
dominance criterion.

A label Li at an artificial vertex i = (itr, idr) comprises the following attributes:

Rrdc
i : the accumulated dual prices along P;

Rload
i : the accumulated load along P;

Rtme,ar
i : the earliest arrival time at vertex i;

Rtme,dp
i : the earliest departure time at vertex i, i.e., including possible waiting times and service;

Rdur,ar
i : the minimum route duration along P up to vertex i such that each customer in P is served within

its time window;
Rdur,dp

i : the minimum route duration along P , when leaving vertex i;
Rstrt

i : the negative of the latest possible departure time at (0, 0) such that each customer in P can be
served within its time window; and

Rcust,n
i : the number of times that customer n ∈ N is served along the path.

The attributes Rrdc
i , Rload

i , Rtme,ar
i , Rtme,dp

i , and Rcust,n
i are standard resources in a vehicle routing prob-

lem with time windows (VRPTW, Desaulniers et al., 2014), while the resources Rdur,ar
i , Rdur,dp

i , and Rstrt
i

are used to generate the as-late-as-possible schedule (Tilk and Irnich (2017); Irnich (2008)). In contrast
to the VRPTW, we explicitly distinguish between the arrival and the departure at each vertex i to model
the situation where truck and drone have different departure times at a vertex i, e.g., whenever the truck
arrives at customer itr, its earliest departure time is at eitr + σitr , while the drone can leave as soon as the
truck arrives (even before the time window opens). We do not distinguish between arrival and departure
for the resource Rstrt

i since the latest possible departure time at the depot is independent from possible
waiting and service times at the current vertex i. Note that the resource Rstrt

i is defined to be negative
to get a non-decreasing REF (Tilk and Irnich, 2017). To properly synchronize truck and drone at a later
vertex j = (jtr, jdr) ∈ W with jtr = jdr it is important to remember the resource consumption whenever
truck and drone separate. Therefore, we use an additional set of attributes Ri whenever the truck operates
alone Ri = (Rtme,ar

i ,Rtme,dp
i ,Rdur,ar

i ,Rdur,dp
i , Rstrt

i ). The meaning of all attributes in Ri is the same as
for the attributes in Ri, e.g., Rtme,ar

i is the earliest arrival time at vertex i when the truck travels alone.
The initial label at the depot 0 = (0, 0) is given by

L0 = (Rrdc
0 , Rload

0 , Rtme,ar
0 , Rtme,dp

0 , Rdur,ar
0 , Rdur,dp

0 , Rstrt
0 , (Rcust,n

0 )n∈N ,R0)

= (0, 0, e0, e0, 0, 0,−l0,0,R0) with

R0 = (Rtme,ar
0 ,Rtme,dp

0 ,Rdur,ar
0 ,Rdur,dp

0 ,Rstrt
0 )

= (e0, e0, 0, 0,−l0)

Extending an arbitrary label Li over an arc a = [i, j, k] ∈ A creates a new label Lj for the corresponding
partial path Pj = ((0, 0), . . . , i, j = (jtr, jdr)) depending on the particular arc types Atog,Aalone, and Adrone.
Thus, we distinguish three different types of REFs depending on each arc type:

(i) propagating a label Li over a together arc a = [i, j,⊥] ∈ Atog results in label Lj with

Rrdc
j = Rrdc

i − πjtr , (2a)

Rload
j = Rload

i + qjtr , (2b)
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Rtme,ar
j = Rtme,dp

i + titrjtr , (2c)

Rtme,dp
j = max{Rtme,ar

j , ejtr}+ σjtr , (2d)

Rdur,ar
j = Rdur,dp

i + titrjtr , (2e)

Rdur,dp
j = max{Rdur,ar

j , Rstrt
i + ejtr}+ σjtr , (2f)

Rstrt
j = max{Rdur,ar

j − ljtr , R
strt
i }, (2g)

Rcust,n
j =

{
Rcust,n

i + 1, if n = jtr

Rcust,n
i , otherwise.

(2h)

Additionally, all attributes in Rj are set to zero: Rtme,ar
j = Rtme,dp

j = Rdur,ar
j = Rdur,dp

j = Rstrt
j = 0;

(ii) propagating a label Li over a truck alone arc a = [i, j,⊥] ∈ Aalone results in label Lj with

Rrdc
j = Rrdc

i − πjtr , (3a)

Rload
j = Rload

i + qjtr , (3b)

Rtme,ar
j =

{
Rtme,dp

i + titrjtr , if Rtme,dp
i = 0

Rtme,dp
i + titrjtr , if Rtme,dp

i > 0
(3c)

Rtme,dp
j = max{Rtme,ar

j , ejtr}+ σjtr , (3d)

Rdur,ar
j =

{
Rdur,dp

i + titrjtr , if Rtme,dp
i = 0

Rdur,dp
i + titrjtr , if Rtme,dp

i > 0
(3e)

Rdur,dp
j =

{
max{Rdur,ar

j , Rstrt
i + ejtr}+ σjtr , if Rtme,dp

i = 0

max{Rdur,ar
j ,Rstrt

i + ejtr}+ σjtr , if Rtme,dp
i > 0

(3f)

Rstrt
j =

{
max{Rdur,ar

j − ljtr , R
strt
i }, if Rtme,dp

i = 0

max{Rdur,ar
j − ljtr ,R

strt
i }, if Rtme,dp

i > 0
(3g)

Rcust,n
j =

{
Rcust,n

i + 1, if n = jtr

Rcust,n
i , otherwise.

(3h)

Whenever truck and drone separate, the attributes in Rj are used and the attributes in Rj remain
unchanged, i.e., Rtme,ar

j = Rtme,ar
i , Rtme,dp

j = Rtme,dp
i , Rdur,ar

j = Rdur,ar
i , Rdur,dp

j = Rdur,dp
i , and

Rstrt
j = Rstrt

i . Thus, the resource consumption up to the drone’s release position is stored and whenever
the drone returns to the truck, we resume this status; and

(iii) propagating a label Li over a drone arc a = [i, j, k] ∈ Adrone results in label Lj with

Rrdc
j = Rrdc

i − πk, (4a)

Rload
j = Rload

i + qk, (4b)

Rtme,ar
j = max

{
max{Rtme,ar

i + tidrk, lk}+ σk + tkjdr ,Rtme,ar
j

}
, (4c)

Rtme,dp
j = max

{
max{Rtme,ar

i + tidrk, lk}+ σk + tkjdr ,Rtme,dp
j

}
, (4d)

Rdur,ar
j = max

{
max{Rdur,ar

i + tidrk, R
strt
i + ek}+ σk + tk,jdr ,Rdur,ar

j

}
, (4e)

Rdur,dp
j = max

{
max{Rdur,ar

i + tidrk, R
strt
i + ek}+ σk + tkjdr ,Rdur,dp

i

}
, (4f)

Rstrt
j = max

{
max{Rdur,ar

i + tidrk − lk, R
strt
i },Rstrt

i

}
, (4g)
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Rcust,n
j =

{
Rcust,n

i + 1, if n = k

Rcust,n
i , otherwise.

(4h)

While propagating over a drone arc, the drone returns to the truck and all resources in Rj are set to
zero again.

We remark that the resources Rtme,dp and Rtme,dp are not necessary in the labeling algorithm. They
do not affect the feasibility of a path (feasibility is ensured by Rtme,ar and Rtme,ar, respectively) and can
always be calculated from the resources Rtme,ar and Rtme,ar. They are only considered for the sake of a
simpler notation.

A new label Lj is feasible, if the capacity (5a), time-window (5b)–(5d), and elementary (5e) constraints
are fulfilled, i.e.,

Rload
j ≤ Q if a ∈ Aalone ∪ Atog ∪ Adrone (5a)

Rtme,ar
j ≤ ljtr , if a ∈ Atog (5b)

Rtme,ar
j ≤ ljtr , if a ∈ Aalone (5c)

Rtme,ar
i + tidrk ≤ lk, if a ∈ Adrone (5d)

Rcust,n
j ≤ 1, for all n ∈ N. (5e)

4.2.3. Synchronizing trucks and drones
Synchronizing the duration of truck and drone according to REFs (4e)–(4g) does not necessarily result

in a partial path with minimum duration, especially not when truck and drone leave the depot 0 at different
times, i.e., max{Rdur,ar

i +tidrk−lk, R
strt
i } ≠ Rstrt

i in REF (4g). Whenever the truck or the drone has to leave
earlier because of (4g), the REFs (4e)–(4f) do not consider the additional duration for the corresponding
vehicle. However, adding the difference of max{Rdur,ar

i + tidrk − lk, R
strt
i } and Rstrt

i to the corresponding
duration in (4e)–(4f) does also not always lead to a proper duration. Since both vehicles are scheduled
according to an as-late-as-possible schedule, shifting the departure to an earlier point in time can lead to
unnecessary waiting times at one or several customers along the path when the service still starts at the
latest feasible point in time. Example 2 visualizes both situations.

Example 2. Given a partial route r = (P = (0, 1, 3, . . .), D = (⟨0, 2, 3⟩), . . .)) with time windows [e0, l0] =
[0, 25], [e1, l1] = [10, 13], [e2, l2] = [6, 8], and [e3, l3] = [15, 20]. The service times are assumed to be σ1 = σ2 =
1 and σ3 = 3. All travel times for truck and drone are set to 2.

Figure 1 depicts two timelines that represent the truck-and-drone movements in route r according to an
as-late-as-possible schedule. The bar above each timeline, represents the truck path P and the bar below
depicts the drone subpath in D. For the sake of clarity, both paths distinguish between travel times (colored
in dark blue), service times (colored in light blue) and waiting times (colored in red). The customer time
windows are sketched by curly brackets.

The first timeline shows that using REFs (4e)–(4f) would lead to an incorrect duration of the path
Rdur,dp

3 = 8 that corresponds only to the trucks’ duration. It ignores the additional duration caused by
leaving the depot at time 6 (shown as a red dashed arc). The second timeline shows that only shifting the
truck, i.e., letting the truck start earlier by the difference of max{Rdur,ar

i + tidrk − lk, R
strt
i } and Rstrt

i , leads
to unnecessary waiting at customer 1. Although the truck arrives before the time window opens, the service
is performed at the latest possible time, resulting in a path duration of Rdur,dp

3 = 13.

On each vertex j along a path, it is possible to shift the latest possible departure time (for truck or
drone) in the direction to e0 for a specific amount of time without increasing the duration of the path. To be
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Legend:

drive

serve

wait

0 2 4 6 8 10 12 14 16 18 20 time

customer 1 customer 3

customer 2

0 2 4 6 8 10 12 14 16 18 20 time

customer 1 customer 3

customer 2

Figure 1: Incorrect synchronization of tuck and drone resulting in an incorrect duration.

more precise, it is possible to shift the departure of a vehicle by the difference between the as-late-as-possible
schedule and the as-early-as-possible schedule. Each additional shift in time results in additional waiting
times within the path and increases the path duration. Algorithm 1 shows the calculation of the additional
duration. Whenever the truck has to leave earlier, the duration on departure as well as the duration on
arrival needs to be adjusted. The values ∆ and ∆ar represent those values. Whenever the drone has to leave
earlier, only the duration on departure ∆ needs to be considered, since the duration on arrival at drone
customer k is not relevant.

For the sake of simplicity, we define the variable αdr = max{Rdur,ar
i + tidrk − lk, R

strt
i } as the latest

possible departure time for the drone at node j just before synchronizing with the truck.

Algorithm 1: Determining the additional duration for truck or drone.
Data: Li, a = [i, j, k] ∈ A
Result: additional duration ∆ and ∆ar

1 Initialization: ∆ = 0,∆ar = 0

2 αdr = max{Rdur,ar
i + titrk − lk, R

strt
i }

// Drone leaves earlier than truck
3 if Rstrt

i < αdr then

4 ∆ =
(
|Rstrt

i − αdr| − (−Rstrt
i − Rtme,dp

i + Rdur,dp
i )

)+

5 ∆ar =
(
|Rstrt

i − αdr| − (−Rstrt
i − Rtme,ar

i + Rdur,ar
i )

)+

// Truck leaves earlier than drone
6 else if Rstrt

i > αdr then

7 ∆ =
(
|Rstrt

i − αdr| − (−αdr −max{Rtme,ar
i + tdr

itrk, lk}+max{Rdur,ar
i + tdr

itrk, R
strt
i + ek})

)+

8 else
9 ∆ = 0

After determining the additional duration, we can update the REFs (4e)–(4f) as follows:

Rdur,ar
j =

max
{
max{Rdur,ar

i + tidrk, R
strt
i + ek}+ σk + tk,jdr +∆,Rdur,ar

j

}
, if Rstrt

i > αdr

max
{
max{Rdur,ar

i + tidrk, R
strt
i + ek}+ σk + tk,jdr ,Rdur,ar

j +∆ar
}
, if Rstrt

i < αdr
(4e’)
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Rdur,dp
j =

max
{
max{Rdur,ar

i + tidrk, R
strt
i + ek}+ σk + tkjdr +∆,Rdur,dp

i

}
, if Rstrt

i > αdr

max
{
max{Rdur,ar

i + tidrk, R
strt
i + ek}+ σk + tkjdr ,Rdur,dp

i +∆
}
, if Rstrt

i < αdr
(4f’)

Example 3. (continued from Example 2) The new timeline in Figure 2 depicts the situation when synchro-
nizing truck and drone according to REFs (4e’) and (4f’).

Legend:

drive

serve

wait

0 2 4 6 8 10 12 14 16 18 20 time

customer 1 customer 3

customer 2

Figure 2: Synchronization of truck and drone resulting in a correct duration.

It shows that customer 1’s service now starts immediately when the time window opens for service. This
reduces the truck’s waiting time by three time units (compared to the second timeline in Figure 1). In
addition, the earlier arrival of the truck at customer 3 also reduces the time that the drone waits for the
truck. The new duration of the partial route r when leaving vertex 3 is Rdur,dp

3 = 12.

4.3. Dominance
A dominance procedure can be used to eliminate all provable redundant labels during the labeling process.

Following the ideas of Roberti and Ruthmair (2021), we present three dominance rules that depend on the
truck-and-drone positions. Whenever truck and drone are at the same position, a label L1 dominates a label
L2 at the same vertex i = (itr, idr) ∈ N with itr = idr if the following dominance rule hold true:

Dominance Rule 1. itr = idr, Rrdc
1 ≤ Rrdc

2 , Rload
1 ≤ Rload

2 , Rtme,ar
1 ≤ Rtme,ar

2 , Rdur,ar
1 ≤ Rdur,ar

2 , Rdur,dp
1 ≤

Rdur,dp
2 , Rstrt

1 ≤ Rstrt
2 , and Rcust,n

1 ≤ Rcust,n
2 for all n ∈ N.

Dominance Rule 1 follows the standard dominance rules, i.e., a simple pairwise ≤-comparison, since all
REFs considered are non-decreasing (Irnich, 2008). Since truck and drone are at the same position, all
attributes in R1 and R2 are zero according to REFs (2) and (4). Consequently, the standard dominance
rules are always fulfilled for this set of attributes.

Whenever truck and drone are separated, i.e., itr ̸= idr, stronger dominance criteria can be applied for
all attributes that have an equivalent attribute in Ri. A label L1 dominates a label L2 at the same vertex
i = (itr, idr) ∈ N with itr ̸= idr if the following dominance rules hold true:

Dominance Rule 2. itr ̸= idr, Rrdc
1 ≤ Rrdc

2 , Rload
1 ≤ Rload

2 , Rtme,ar
1 ≤ Rtme,ar

2 , Rtme,ar
1 + Rtme,ar

1 ≤
Rtme,ar

2 + Rtme,ar
2 , Rdur,ar

1 ≤ Rdur,ar
2 , Rdur,ar

1 + Rdur,ar
1 ≤ Rdur,ar

2 + Rdur,ar
2 , Rdur,dp

1 ≤ Rdur,dp
2 , Rdur,dp

1 +

Rdur,dp
1 ≤ Rdur,dp

2 +Rdur,dp
2 , Rstrt

1 ≤ Rstrt
2 , Rstrt

1 +Rstrt
1 ≤ Rstrt

2 +Rstrt
2 and Rcust,n

1 ≤ Rcust,n
2 for all n ∈ N.
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Dominance Rule 3. itr ̸= idr, Rrdc
1 ≤ Rrdc

2 , Rload
1 ≤ Rload

2 , Rcust,n
1 ≤ Rcust,n

2 for all n ∈ N,

Rtme,ar
1 ≥ Rtme,ar

2 ,

Rtme,ar
1 + Rtme,ar

1 ≤ Rtme,ar
2 + Rtme,ar

2 ,

Rtme,ar
1 + max

k∈Ndr,w∈N∪{0′}:k ̸=w
{lk + σk + tdrkw} ≤ Rtme,ar

2 + Rtme,ar
2 ,

Rdur,ar
1 ≥ Rdur,ar

2 ,

Rdur,ar
1 + Rdur,ar

1 ≤ Rdur,ar
2 + Rdur,ar

2 ,

Rdur,ar
1 +max{Rdur,ar

1 + tdridrk∗ ,Rstrt
1 + ek∗}+ σk∗ + tdrk∗w∗ ≤ Rdur,ar

2 + Rdur,ar
2 ,

Rdur,dp
1 ≥ Rdur,dp

2 ,

Rdur,dp
1 + Rdur,dp

1 ≤ Rdur,dp
2 + Rdur,dp

2

Rdur,dp
1 +max{Rdur,dp

1 + tdridrk∗ ,Rstrt
1 + ek∗}+ σk∗ + tdrk∗w∗ ≤ Rdur,dp

2 + Rdur,ar
2 ,

Rstrt
1 ≥ Rstrt

2 ,

Rstrt
1 + Rstrt

1 ≤ Rstrt
2 + Rstrt

2 , and

Rstrt
1 +max{Rdur,ar

1 + tdrk∗w∗ − lk∗ , Rstrt
1 } ≤ Rstrt

2 + Rstrt
2

with (k∗, w∗) = argmaxk∈Ndr,w∈N∪{0′}:k ̸=w{lk + σk + tdrkw}.

For example, in Dominance Rule 2, the equation Rtme,ar
1 + Rtme,ar

1 ≤ Rtme,ar
2 + Rtme,ar

2 is only valid
if Rtme,ar

1 ≤ Rtme,ar
2 and Rtme,ar

1 ≤ Rtme,ar
2 are fulfilled at the same time. Dominance Rule 3 works in

a similar way: When Rtme,ar
1 ≥ Rtme,ar

2 holds true, the equation Rtme,ar
1 + Rtme,ar

1 ≤ Rtme,ar
2 + Rtme,ar

2

can only be true if Rtme,ar
1 ≤ Rtme,ar

2 . Additionally, the maximum term guarantees that the resource
consumption of the first path is never larger than that of the second path, when truck and drone meets each
other at a later position j = (jtr, jdr) with jtr = jdr in the path.

4.4. Acceleration Techniques
In this section we sketch techniques to accelerate the proposed BPC algorithm.

Lower Bound on the Number of Trucks. We compute a lower bound on the number of trucks needed to serve
all customers based on their demand. Therefore, we solve a bin-packing problem with a bin size equal to the
capacity of the truck Q and item weights equal to the demand qv of each customer v ∈ N . This bin-packing
problem is modeled as an arc-flow formulation (Valério de Carvalho, 1999). Using a lower bound on the
number of trucks prevents the branch-and-bound tree from solving infeasible nodes, while branching on the
number vehicles used.

ng-Route Relaxation and Dynamic Neighborhood Extension. Instead of solving an elementary SPPRC al-
gorithm, it is common to relax its elementary requirement and only solve a SPPRC algorithm. On the
one hand, this leads to an easier/faster solution of the pricing problem, but on the other hand, it comes at
the cost of a weaker linear relaxation of the corresponding MP. A prominent method to control this trade-
off is the ng-route relaxation, originally invented by Baldacci et al. (2011). It introduces a parametrized
neighborhood Nv ⊂ N for all v ∈ N to effectively avoid non-elementary paths. A non-elementary cycle
(v, v1, . . . , vm, v) over vertex v with m ≥ 1 is only feasible if v /∈ Nvl for some l ∈ {1, . . . ,m}. The quality
of the lower bound and the efficiency of the pricing problem now depends on the size of Nv, i.e., larger
neighborhoods lead to tighter bounds, while smaller neighborhoods lead to a faster labeling algorithm. To
adapt the ng-route relaxation to the artificial network N we assign each artificial vertex (itr, idr) ∈ N with
the neighborhood of the truck vertex Nitr . In addition, we strength the ng-route relaxation with dynamic
neighborhood extensions (DNE, Roberti and Mingozzi, 2014; Bode and Irnich, 2015) in the same fashion as
proposed in Schmidt et al. (2023). The REFs (2h), (3h), and (4h) are replaced by Rcust,n

j = 0 if n /∈ Nj .
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Heuristic Pricing. The pricing subproblem does not necessarily have to be solved to optimality, as long
as negative reduced-cost columns can be generated. Therefore, we use a hierarchy of pricing heuristics
(Gamache et al., 1999) that rely on reduced networks to accelerate the labeling procedure. The first(second)
heuristic only includes 6(10) outgoing truck arcs (Aalone∪Atog) and at most 3(5) drone arcs (Adrone). Only
if none of these heuristics has generated a reduced-cost column, the pricing problem is solved exactly. We
choose the arcs according to the lowest reduced cost in each pricing iteration.

MIP-based heuristic. To provide an early upper bound, we solve a MIP-based heuristic at the first and
second level of the branch-and-bound tree. Therefore, we solve the RMP with all columns generated up to
this point as an integer model. Whenever the BPC terminates without finding an upper bound within the
given time limit, the final RMP is solved as a MIP-based heuristic again.

Bidirectional Labeling. Developing a bidirectional labeling algorithm on the asymmetric network is a non-
trivial task. Nevertheless, the work of Blufstein et al. (2024) and Schmidt et al. (2023) have shown that a
bidirectional labeling algorithm on this network is possible for TSP-D and VRP-D variants. Pre-tests have
shown, that it is also possible to develop a bidirectional labeling for the VRP-DTW, but the number of
generated labels in the backward labeling increases rapidly compared to the forward labeling. To prevent
the backward labeling from this combinatorial explosion, even stronger dominance rules or other techniques
are necessary. Despite the general success of bidirectional labeling (Righini and Salani, 2006; Tilk et al.,
2017), we do not employ it here because it unfortunately does not pay off.

4.5. Valid Inequalities
In our BPC algorithm, we implement capacity cuts (CC, Baldacci et al., 2008) to strengthen the linear

relaxation of the RMP. Let C ⊆ N be any subset of customers and K(C) a lower bound on the number of
trucks needed to serve all customers in C according to their demand. The valid inequality reads∑

r∈ΩC

λr ≥ K(C), (7)

where ΩC = {r ∈ Ω : r ∩ C ̸= ∅} represents the subset of routes that contain at least one customer from
subset C. Instead of solving a bin packing problem (as done in Section 4.4), we compute the lower bound
K(C) = ⌈

∑
v∈C qv/Q⌉.

Since this variant of CC is non-robust, they affect the structure of the pricing problem, i.e., we have to
adjust the pricing problem to handle the dual prices of each inequality. The adjustments are as follows: Let
C ∈ C denote all active CCs and γC > 0 their corresponding positive dual prices. Further, we define an
additional binary resource (Rcc,C)C∈C , initially set to zero. When propagating along an arc a = [i, j, k] ∈ A,
we update the resource according to the arc type used:

Rcc,C
j =


1, if a = [i, j,⊥] ∈ Atog and jtr ∈ C

1, if a = [i, j,⊥] ∈ Aalone and jtr ∈ C

1, if a = [i, j, k] ∈ Adrone and k ∈ C

Rcc,C
i , otherwise.

(8)

The dual price γC has to be subtracted from the reduced cost, whenever a partial path serves a customer
in C at the first time. Therefore, we adjust the REFs in (2a), (3a), and (4a) as follows:

Rrdc
j =



Rrdc
i − πjtr −

∑
C∈C:Rcc,C

i =0,jtr∈C

γC if a = [i, j,⊥] ∈ Atog (2a’)

Rrdc
i − πjtr −

∑
C∈C:Rcc,C

i =0,jtr∈C

γC if a = [i, j,⊥] ∈ Aalone (3a’)

Rrdc
i − πk −

∑
C∈C:Rcc,C

i =0,k∈C

γC if a = [i, j, k] ∈ Adrone (4a’)
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The dominance Rules (1)-(3) are modified according to Baldacci et al. (2008). To identify violated inequal-
ities (7), we use the MIP-based separation procedure by Martinelli et al. (2013).

4.6. Branching
To obtain an integer solution of formulation (1), we use a four-stage branching scheme. Let λ∗

r be a
fractional solution of the RMP defined over Ω̄. At the first stage, we branch on the number of trucks in use,
whenever K∗ =

∑
r∈Ω λ∗

r is fractional. Therefore, we set the bounds in (1c) to L = ⌊K∗⌋ and K = ⌈K∗⌉.
Second, we branch on the number of times each customer is served by a drone (Roberti and Ruthmair,
2021). Let ykr be the number of times a customer k is served by route r. Whenever y∗k =

∑
r∈Ω ykrλ

∗
r is

fractional for a customer k ∈ Ndr, we create two branches yk∗ = 0 (i.e., customer k∗ has to be served by the
truck) and yk∗ = 1 (i.e., customer k∗ has to be served by a drone) for customer k∗. We choose k∗ according
to a value y∗k∗ − ⌊y∗k∗⌋ closest to 0.5.
At the third stage, we consider the truck flow between two customers v, w ∈ N with v ̸= w. Let f tr

ar be the
flow value on a route r along a truck arc a ∈ Atr

vw = {{[i, j,⊥] ∈ Atog : itr = idr = v, jtr = jdr = w} ∪
{[i, j,⊥] ∈ Aalone : itr = v, jtr = w, idr = jdr ∈ V }}. Whenever, f tr∗

ar =
∑

r∈Ω

∑
a∈Atr

vw
f tr
arλ

∗
r is fractional for

a customer pair v and w, we choose v∗, w∗ such that the value f tr∗
v∗w∗ − ⌊f tr∗

v∗w∗⌋ is closest to 0.5. We create
the two branches

∑
r∈Ω

∑
a∈Atr

v∗w∗
f tr
arλr = 0, i.e., arc (v∗, w∗) ∈ A must not be traversed by a truck and∑

r∈Ω

∑
a∈Atr

v∗w∗
f tr
arλr = 1, i.e., arc (v∗, w∗) ∈ A must be traversed by a truck.

Finally, we branch on the flow of a drone subpath ⟨v, k, w⟩, similar to the branching strategy on
stage three. Therefore, let fdr

ar be the flow value on a route r along a drone subpath a ∈ Adr
⟨v,k,w⟩ =

{[(w, v), (w,w), k] ∈ Adrone}. Again, whenever fdr∗
ar =

∑
r∈Ω

∑
a∈Adr

⟨v,k,w⟩
fdr
arλ

∗
r is fractional for a drone sub-

path ⟨v, k, w⟩ with v ̸= k ̸= w, v ̸= w we choose the subpath ⟨v∗, k∗, w∗⟩ according to a value fdr
⟨v∗,k∗,w∗⟩ −

⌊fdr
⟨v∗,k∗,w∗⟩⌋ closest to 0.5. The two branches are created as follows:

∑
r∈Ω

∑
a∈Adr

⟨v∗,k∗,w∗⟩
fdr
arλr = 0, i.e., the

subpath ⟨v∗, k∗, w∗⟩ must not be traversed by a drone and
∑

r∈Ω

∑
a∈Adr

⟨v∗,k∗,w∗⟩
fdr
arλr = 1, i.e., the subpath

⟨v∗, k∗, w∗⟩ must be traversed by a drone. Unique truck and drone paths are implied by the branching
decisions on stages three and four. Since both types of decisions fully determine a solution, the presented
branching scheme is complete.

We remark that all branching decisions on stages two to four can be implemented directly on the artificial
network by removing a subset of arcs and/or vertices. Thus, it is not necessary to add the constraints to
the RMP and handle their dual prices in the pricing problem. We use a best-first strategy to explore the
branch-and-bound tree with the primal goal to improve the dual bound.

5. Computational Results

Our BPC algorithm was coded in C++ and compiled into a 64-bit single-thread executable with GCC
11.2.0 in release mode. CPLEX 20.1.0 with default parameters (except for allowing only a single thread)
is used to (re)optimize the RMPs, solve the primal MIP-based heuristic, solve the bin-packing problem,
and separate CCs. The computation time is limited to 7200 seconds per instance plus an additional time
of 60 seconds to solve the MIP-based heuristic after time out. The computations were carried out on the
high-performance computing cluster MOGON II of Johannes Gutenberg University Mainz. All used nodes are
equipped with Intel Xeon E5-2630v4 (Broadwell) processors running at 2.2 GHz. Thus, its performance (on
a single node) is slightly worse compared to a standard desktop processor.

5.1. Instances
Since there is no commonly used instance set publicly available, we generate a set of VRP-DTW instances

to test our BPC algorithm. We create a set of 20 instances with 15, 20, 25, and 30 customers, respectively,
together with a single depot. Each customer location is placed at a randomly distributed location on a
50 × 50 grid. The depot is always centrally located at (25, 25) and houses a homogeneous fleet of trucks,
each with a capacity of Q = 100. The fleet size K is equal to the number of customers considered in
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the instance, so the fleet is assumed to be unconstrained. A drone can carry goods of at most Qdr = 25.
Each customer v ∈ N has a demand qv randomly drawn from qv ∈ {10; 15; 20; 25; 30}. The service time is
set to 10 for all customers, i.e., σv = 10 for all v ∈ N . We assume that there is no service at the depot,
i.e., σ0 = σ0′ = 0. We assume a planning horizon of 540 units, so we set the time window at the depots
accordingly: [e0, l0] = [e0′ , l0′ ] = [0, 540]. For each customer, we randomly draw a time window from the
following options: [0, 240], [240, 480], or a randomly generated time window with a width of 180 within
the interval of the planning horizon. As is common practice in the literature on truck-and-drone routing,
we assume that drone travel times are lower than truck travel times. Given two customers v and w with
their corresponding positions on the grid (xv, yv) and (xw, yw), we compute the travel time for trucks as
Manhattan distance rounded down to one decimal, i.e., tvw = ⌊10 (|xv − xw|+ |yv − yw|)⌋. The travel time
for a drone is computed as Euclidean distance divided by a factor β representing the speed of the drone
(also rounded down to one decimal), i.e, tdr

vw = ⌊10 (
√

(xv − xw)2 + (yv − yw)2/β)⌋. We initially set β = 3,
i.e., a drone is 3 times faster than a truck. We add a small offset ϵ to all travel times such that the triangle
inequality holds.

5.2. Evaluation of Algorithmic Components
We now present algorithmic results for our BPC algorithm. At first, we show the results on a pure

branch-and-price (BaP) algorithm, i.e. without considering CC. In a second step, we successively add CCs
and strength the ng-route relaxation with DNE, to show their contribution to the solution process. Table 2
shows the results for the BaP algorithm grouped by the number of customers considered (|N |). For the
ng-route relaxation, we consider a neighborhood Nv that contains vertex v itself and the next five closest
customers that can possibly reached within their time windows. The columns of the table have the following
meaning:

#Opt: the number of instances (out of 20) solved to proven optimality within the given time limit;
Gapr: the average gap between the optimal solution (opt) and the lower bound at the root node (LBr)
in percent, i.e., 100 · (opt− LBr)/LBr;
Gap: the average remaining gap between the upper bound (UB) and lower bound (LB) after time out
in percent, i.e., 100 · (UB − LB)/LB;
#B&B: the average number of solved branch-and-bound nodes; and
Time: the average solution time (in seconds).

Since the algorithm computed an UB and LB for all 80 instances, the Gap considers all instances. The Gapr

does only consider instances with a known optimal solution opt.

|N | #Opt Gapr Gap #B&B Time

15 20 1.97 0.00 27.5 81.0
20 19 1.40 <0.01 101.0 1,869.6
25 12 1.16 0.36 164.6 4,810.7
30 1 0.32 1.14 61.3 6,954.9

Total 52 1.54 0.36 88.6 3,429.1

Table 2: Computational results for the branch-and-price algorithm.

The BaP algorithm can solve 51 out of 60 instances with up to 25 customers to proven optimality. For
instances with 30 customers, only one instance can be solved to proven optimality. Since the average solution
times and the number of solved branch-and-bound nodes are quite high, we implement CC to strengthen the
linear relaxation at the root node (see Section 4.5). Additionally, we reduce the size of all neighborhoods Nv

to 3 customers (including the vertex v itself and its both closest neighbors) and extend the neighborhoods
dynamically (see Section 4.4). The dynamic extension is stopped when all routes are elementary or 20 task
cycles have been eliminated.

Table 3 presents the results of both BPC algorithms, including CC and DNE, again grouped by the
number of customers considered (|N |). The columns have the same meaning as in Table 2. The additional
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column Gapr+c represents the average percentage gap at the root node after adding CC and at most 20
iterations of dynamic neighborhood extensions. Analogous to Gapr, it is only calculated for instances that
were solved to proven optimality.

BPC with CC BPC with CC and DNE

|N | #Opt Gapr Gapr+c Gap #B&B Time #Opt Gapr Gapr+c Gap #B&B Time

15 20 1.97 0.89 0.00 6.8 114.3 20 2.85 0.89 0.00 7.8 84.8
20 19 1.40 0.69 0.03 21.5 1,969.0 20 1.75 0.69 0.00 25.2 1,630.0
25 12 1.30 0.55 0.38 43.1 4,621.8 18 1.66 0.81 0.21 88.5 3,386.8
30 2 0.59 0.13 1.10 14.0 6,776.4 4 1.13 0.63 1.18 58.5 6,618.6

Total 53 1.56 0.71 0.36 21.3 3,370.4 62 2.04 0.79 0.34 45.0 2,930.0

Table 3: Computational results for the branch-price-and-cut algorithm with CC and DNE.

Table 3 shows that the addition of CC reduces the number of solved branch-and-bound nodes by around
75% compared to the BaP algorithm. Also, the average gap at the root node (after adding cuts) can be
reduced by approximately 50%. Unfortunately, CC increase the computation times for small instances
with 15 and 20 customers, but they reduce the computation times as soon as more than 15 customers are
considered in an instance. Nevertheless, only one additional instance with 30 customers can be solved to
proven optimality in comparison to the BaP algorithm. Only the addition of DNE can finally decrease the
computation times by approximately 15% over all instances. Additionally, nine more instances can be solved
so that all small-sized instances with 15 and 20 customers are now solved to proven optimality. For all other
instance sizes, there remains a relatively small gap of 0.2% and 1.2%, respectively.

In several VRPTW variants, the non-robust subset-row inequalities (SRI, Jepsen et al., 2008) turned
out to be a successful method to further strengthen the linear relaxation. Pre-tests have shown that adding
SRIs to our VRP-DTW-specific BPC algorithm makes the labeling algorithm significantly more difficult and
leads to a considerable increase in computation time. Therefore, we do not consider SRIs.

5.3. Managerial Insights
We now present three analyses on (i) the impact of combined truck-and-drone routing compared to

classical truck routing, (ii) the impact of different drones that only differ in their flying range, and (iii) the
comparison of an as-late-as-possible schedule with an as-early-as-possible schedule.

Impact of combined truck-and-drone routing. We analyze the impact of combined truck-and-drone routing in
comparison to classical truck routing. By removing all truck alone and drone arcs from the artificial network,
the BPC algorithm solves a VRPTW with the objective to minimize the summarized route duration. Of
course, this problem is computationally much easier to solve than the VRP-DTW so that all 80 instances
were solved to proven optimality within approximately 160 seconds of computation time on average over
all customer sizes. Since we are only interested in an upper bound (or optimal solution) to the objective
function, we do not present any further computational results for the VRPTW solutions.

Figure 3 shows the average summarized route duration for classical truck routing (VRPTW) compared
to truck-and-drone routing with different types of drones, meaning that each type of drone has a different
speed relative to the truck. If trucks and drones have the same speed (β = 1), the average summarized
route duration can be reduced by approximately 30% compared to classical truck routing consistent over all
instance sizes. Whenever the drone is faster than the truck (β = 3), the summarized duration can be further
decreased by approximately 15 percentage points. Increasing the drone speed to β = 5 or above does result
in considerably additional time savings, consistent with the findings in Schmidt et al. (2023).

Analysis of different drone flying ranges. In the following, we assume a drone speed of β = 3 and analyze
different flying ranges δ for the drone. To generate such flying ranges, we follow the method used in Schmidt
et al. (2023): We introduce a new parameter γ ∈ [0, 100] and limit the instance-specific flying range so that
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Figure 3: Comparison between VRPTW and VRP-DTW with different drone speeds.

the largest value tdr
idrk + tdr

k,jdr ≤ δ is fulfilled for no more than γ · |Adrone|/100 drone arcs. Thus, all other
100− γ percent of the drone arcs can be removed from the network.

Figure 4 visualizes the effects of using different types of drones with different flying ranges.
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Figure 4: Comparison of different drone flying ranges.

Obviously, the more customers can theoretically reached by a drone, the lower is the summarized duration
over all routes. However, this figure shows that it is not necessary to use a drone with an unlimited flying
range of γ = 100%. The time savings compared to a drone that can only reach 80% of all customers is
negligible. Using drones with a flying range that theoretically reaches half of all customers results in an
average increase of the summarized delivery time by approximately 6% compared to an unlimited drone.
Only if the drone’s flying range is further limited to reach a maximum of only 20% of all customers, the
summarized delivery time increases by approximately 30% on average.

Minimizing route duration vs. minimizing completion time. With only slight adjustments, our BPC al-
gorithm can also solve a VRP-DTW instance with the objective to minimize the summarized completion
time. This allows us to analyze the impact of both objective functions (minimizing the summarized route
duration and minimizing the summarized completion time) on the total time needed to serve all customers.
Table 4 presents the average summarized completion time (Compl. time), the average summarized duration
(Duration) and the average percentage savings in time (Savings (%)) that can be realized with an as-late-
as-possible schedule compared to an as-early-as-possible schedule. All values are grouped by the number of
customers considered in the instance (|N |). It shows that the average time needed to serve all customers
can be reduced by approximately 64% on average over all instances if both vehicles can leave the depot at
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|N | Compl. time Duration Savings (%)

15 7,819 2,727 65.12
20 9,194 3,478 62.17
25 11,694 4,209 64.00
30 14,161 4,923 65.24

Avg. 10,717 3,834 64.13

Table 4: Comparison of route duration and completion time.

any time instead of starting immediately at e0. At first sight, these values seem high, but waiting times are
often long, especially on routes that serve customers with late time windows.

6. Conclusions and Outlook

In the paper at hand, we studied the VRP-DTW that generalizes the VRP-D by the existence of time
windows. Further we presented the first exact BPC algorithm to solve the VRP-DTW with the objective to
minimize the summarized duration over all routes. The presentation mainly focused on the modeling and
the effective solution of the column-generation pricing problem, the SPPRC. Further, non-robust capacity
cuts and dynamic neighborhood extensions were implemented to strengthen the linear relaxation of the
set-partitioning formulation. A computational study showed that only the addition of capacity cuts is not
enough to decrease the computation times compared to a branch-and-price algorithm. Only by adding
dynamic neighborhood extensions, the solution times were considerably reduced and 9 more instances were
solved to proven optimality. Managerial insights showed that combined truck-and-drone routing can reduce
the average delivery times by up to 45% (depending on the speed of a drone) compared to classical truck
routing. We also showed that it is not necessary to use drones with an “unlimited” flying range. The average
delivery time increases only by 6% when using a drone that can reach at most 50% of all customers. Finally,
we showed that an as-late-as-possible schedule can considerably reduce the delivery times compared to an
as-early-as-possible schedule.

Our version of the VRP-DTW is based on the assumption that a drone always waits on the ground
instead of hovering, which implies that there is no energy consumption that affects its flying range while
waiting. Of course, this assumption can be changed by assuming that a drone always hovers while waiting.
In this case, the proposed BPC algorithm is no longer applicable. When propagating a path through the
artificial network, the latest departure time for both vehicles may change, resulting in (additional) waiting
times at a customer node. The labeling algorithm in its current form cannot ensure that existing drone
flights along a truck-and-drone path remain feasible in such a situation. New techniques, similar to those
that ensure ride time constraints in a Dial-A-Ride Problem, need to be developed to keep track of the
feasibility of a truck-and-drone path.
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