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Abstract

We present a new approach of solving the single picker routing problem with scattered storage (SPRP-SS),
which is a fundamental problem in modern warehouse operations management. The SPRP-SS assumes that
SKUs of articles are stored at possibly many locations. An effective integer programming based approach
relies on extending the state space of Ratliff and Rosenthal’s dynamic program for the basic single picker
routing problem to accommodate the SPRP-SS. As a result, the mixed integer linear programming (MIP)
formulation has a quadratic number of variables. We propose two modifications of the extended state space
to retain the linearity of the models. This is achieved by replacing the quadratically growing parallel edges
of the extended state space by two different types of linear-size subnetworks. These replacements lead to
different state spaces and herewith different MIP formulations, for which we analyze theoretical properties
such as their size and strength of the linear relaxations. We compare the new formulations with the state of
the art using a collection of 800 SPRP-SS instances. The results show that the new formulations are more
than competitive providing integer optimal solutions of realistic and even large-scale instances in less than
two seconds on average. The second formulation outperforms the current one regarding the computational
speed: For the largest instances with 200 articles to be collected, average speedups reach the factors of 3.18
and 4.87 for general and unit demand, respectively.

Keywords: routing; warehousing; picker routing; scattered storage

1. Introduction

We consider order picking operations in warehouses where pickers travel through the warehouse to collect
demanded articles from the storage locations (picker-to-parts). Order picking accounts for more than half of
the warehouse operating costs (Bartholdi and Hackman, 2019) and therefore represents a good opportunity
for expense optimization. We address the underlying single tour routing problem, which is known as the
single picker routing problem (SPRP) or order picking problem. The most basic version of the SPRP considers
a rectangular single-block parallel aisle warehouse with a single depot, which is start point and end point of
each tour. The seminal work of Ratliff and Rosenthal (1983) shows that a minimum-length picker tour can
be computed with dynamic programming in linear time. More precisely, the overall computational effort is
linear in the number of aisles and the number of storage locations (=pick positions) to visit, as shown by
Heßler and Irnich (2022).

Several variants of the SPRP extend the basic problem and require the computation of picker tours
for different warehouse layouts (two-block (Roodbergen and de Koster, 2001), multi-block (Pansart et al.,
2018), fishbone (Çelk and Süral, 2014), butterfly (Öztürkoğlu et al., 2012), etc.) and characteristics of the
start and drop-off point(s) of a picker tour (Masae et al., 2020). In addition, simpler variants of the SPRP
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result from routing policies such as traversal (a.k.a. S-shape), midpoint, largest gap (Hall, 1993), return,
and composite (Petersen, 1997). Routing policies address the practical issue that human pickers may not
be able to execute all types of optimal tours, which can be complicated, counterintuitive, and difficult to
memorize. As a result, the picker must execute a tour defined by a few simple rules. An more detailed
overview of SPRP variants and pointers to the literature can be found in (Heßler and Irnich, 2024, Table 1).

In this paper, we address the SPRP with scattered storage (SPRP-SS), which is another variant of SPRP.
The term scattered storage describes the storage strategy of placing the stock keeping units (SKUs) of one
or more articles not only at a single, but possibly several pick positions in the warehouse (this is also our
definition: a SKU is one item/a single unit of an article, where identical SKUs can be stored at different
locations/positions). The reasoning behind scattering is that SKUs of a demanded article can be picked up
quickly no matter of the picker’s current position in the warehouse (Weidinger, 2018). Scattered storage is
the predominant storage strategy in modern e-commerce warehouses of companies like Amazon or Zalando
(Weidinger, 2018; Weidinger et al., 2019; Boysen et al., 2019; Khan et al., 2024).

In contrast to the long history of the basic SPRP, the SPRP-SS has only received increased attention
since the middle of the last decade. First addressed by Singh and van Oudheusden (1997) and Daniels et al.
(1998), up to this day, all competitive exact solution approaches are mixed-integer programming (MIP) based
except for the Benders approach of Haouassi et al. (2024). Recently, Goeke and Schneider (2021) proposed
an effective MIP formulation that solves instances of the SPRP-SS of realistic size to proven optimality.
This approach is only outperformed by another MIP-based solution approach of Heßler and Irnich (2024).
Their idea is as follows: In the state space of the dynamic-programming (DP) approach of Ratliff and
Rosenthal (1983) for the basic SPRP, every feasible picker tour is a path and vice versa. The first property
also holds for the SPRP-SS. With an extension in the underlying state space, the authors use a shortest
path formulation to solve the problem. Herein, the extension of the state space requires the addition of new
edges. The number of edges grows quadratically with the number of relevant pick positions per aisle.

There exist some other approaches for the SPRP-SS: Weidinger (2018) compared a decomposition pro-
cedure (select the pick positions by different priority rules and use the algorithm of Ratliff and Rosenthal
to determine a picker tour) with the MIP of Daniels et al. (1998) complemented with MTZ-based subtour-
elimination constraints (Miller et al., 1960). A rather involved MIP-based approach has been presented
by Su et al. (2023) for multi-block parallel-aisle warehouses. Unfortunately, this approach has not been
compared with any other approach, e.g., using the fact that the SPRP-SS with unit demand can be mod-
eled and solved as a generalized TSP (GTSP) for any warehouse layout (for the definition of unit demand
and general demand, see Section 2). Wildt et al. (2024) exactly use this fact, which makes their approach
generally applicable, but ignores that warehouses often have a well-structured layout that can be exploited
algorithmically. Accordingly, they use a series of transformations (SPRP-SS to GTSP, GTSP to clustered
TSP, clustered TSP to asymmetric TSP, asymmetric to symmetric TSP) to finally solve them as ordinary
TSP instances, either with a branch-and-cut-based TSP solver like Concorde (Applegate et al., 2003) or with
the Lin–Kernighan–Helsgaun (LKH) heuristic (Helsgaun, 2000). The equivalence to the GTSP was also dis-
cussed by Heßler and Irnich (2024) who compare a re-implementation of the branch-and-cut algorithm of
Fischetti et al. (2002) with their approach showing that for small pick lists the GTSP-based solution can be
competitive. Note that for general demand the equivalence to the GTSP is no longer given, so that Wildt
et al. (2024) proposed heuristic transformations for this case.

1.1. Contributions
We introduce two new MIP formulations for the SPRP-SS which are linear in the number of aisles and

in the number of pick positions. We describe both formulations now:
EG: The first formulation is formally identical to the network-flow model of Heßler and Irnich (2024), but

uses a new underlying state space which replaces parallel edges (a quadratic number of gap actions is
possible) by a linear-size subnetwork. Since the subnetwork allows to expand gaps, this formulation is
called enlarged gaps (EG) formulation.

RG: The second formulation builds a different kind of linear-size subnetwork in which gaps can only be
reduced. Accordingly, the second formulation is called the reduced gaps (RG) formulation. In case
of general demand, the network-flow model of Heßler and Irnich (2024) must be modified resulting
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in a slightly larger model with auxiliary variables and additional constraints. However, these model
extensions keep the formulation linear.

We compare the two formulations among each other and against the state-of-the-art formulation of Heßler
and Irnich (2024), in the following referred to as formulation HI. The theoretical and computational analyses
provide the following findings:

• Both formulations EG and RG have a generally weaker linear relaxation than the formulation HI. On
the large SPRP-SS instance set used in the computational studies, formulation RG is almost as strong
as formulation HI, while formulation EG is weaker.

• Both formulations EG and RG give significantly smaller MIP models than formulation HI. Formula-
tion RG reduces, on average, more variables/edges (between 48 and 86 percent) than formulation EG
(between 34 and 81 percent) in comparison to the quadratically sized networks used in formulation HI.

• Compared to the state of the art, formulation HI, the new formulation RG accelerates the MIP solution
by the factor of 1.89 for general demand and by the factor of 2.42 for unit demand for the SPRP-SS
instances in the testbed.

1.2. Structure
The remainder of this paper is structured as follows: In Section 2, we formally introduce the SPRP-

SS. We summarize the relevant solution approaches in Section 3 which includes the DP of Ratliff and
Rosenthal for the SPRP, the extension of the state space of Ratliff and Rosenthal to incorporate aisle
traversal options needed for the SPRP-SS, and the network-flow model of Heßler and Irnich, which is finally
used to solve SPRP-SS instances. The subnetworks for formulations EG and RG are presented in Section 4.
Computational analyses and their results are discussed in Section 5. We close the paper by drawing final
conclusions in Section 6.

2. The Single Picker Routing Problem with Scattered Storage

In the SPRP-SS, the set S denotes the different articles, where each article s ∈ S is stored at (possibly
several) pick positions p ∈ Ps. The set P =

⋃
s∈S Ps describes all relevant pick positions. At position p ∈ Ps,

bsp ≥ 1 units of article s ∈ S are available for being collected. The SKUs are stored at the pick positions
along both sides of the picking aisles in a single-block parallel-aisle warehouse. Note that the terms SKU
and article describe the same object with article being what is requested by a customer and SKU referring
to a unit of an article stored in the warehouse. The goal of the SPRP-SS is then to find a minimum-length
picker tour that starts and ends at the given I/O point 0 and visits a subset of the pick positions such
that the given demand qs for each article s ∈ S is satisfied, i.e., can be collected from the positions visited.
Daniels et al. (1998) already stated that apart from the general-demand case with qs > 1 for at least some
articles s ∈ S, the SPRP-SS can also emerge in the so-called unit-demand case. In this case, the demanded
number is qs = 1 for all articles s ∈ S. The SPRP-SS with unit demand can be modeled as a generalized
traveling salesman problem (GTSP, Fischetti et al., 2002) with the pairs in {(s, p) ∈ S ×P : bsp = 1} as the
cities and the sets Cs = {(s, p) : p ∈ Ps} for s ∈ S as the clusters (Daniels et al., 1998). The unit-demand
case is equivalent to the situation where each pick position bsp holds sufficient supply to cover the whole
demand qs of the respective article s ∈ S.

The SPRP-SS is an NP-hard problem (Weidinger, 2018). This statement remains true when picker tours
are restricted to routing policies such as traversal, return, midpoint, largest gap, and composite (Lüke et al.,
2024). Approaches for the exact solution and optimal routing have been proposed by Weidinger (2018),
Goeke and Schneider (2021), and Heßler and Irnich (2024). The latter approach is the best-performing
exact solution algorithm to date. Since our goal is to improve on the model proposed by Heßler and Irnich,
we will present their formulation and approach in the following.

3. Exact Solution of the SPRP and SPRP-SS

We start with the description of the DP by Ratliff and Rosenthal (1983), explain how the state space of
the DP was extended by Heßler and Irnich (2024) to include the option of not necessarily having to visit all
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Figure 1: State space and PTS for a warehouse with aisles J = {1, 2, 3} and articles S = {1, 2, . . . , 8} (unit
demand). The highlighted path (red/bold) in the state space represents the optimal picker tour.

pick positions, and present their binary formulation of the SPRP-SS.

3.1. Basic State Space of Ratliff and Rosenthal
We briefly introduce the ideas and assumptions of Ratliff and Rosenthal (1983) that allow to formulate

the SPRP and solve it by DP in linear time. They consider a single-block parallel-aisle warehouse. Each
aisle is uniformly divided into a number of pick positions of identical size. Each demanded article is stored
at a pick position in the warehouse resulting in a set of pick positions P that the picker necessarily has to
visit. Picking from either the right-hand side or the left-hand side (or both) is not distinguished, so that
the side of the aisle is irrelevant for computing the picker tour length. Therefore, different SKUs located at
the same pick position can be seen as a single picking request.

Formally, let J = {1, 2, . . . ,m} denote the aisles in a single-block rectangular warehouse with parallel
aisles. A picker tour can be constructed by alternately deciding how the picker traverses an aisle and how he
or she processes from aisle j to aisle j+1. Moving through an aisle j ∈ J results in the transition from stage
j− to j+ while performing a cross-aisle action from an aisle j to j +1 leads to the transition from stage j+

to (j + 1)−. The picker tour ends in a finite state at stage (m + 1)−, so that the state space of the DP
has 2m+1 stages. To model the states and transitions of the DP, Ratliff and Rosenthal introduce so-called
partial tour subgraphs (PTSs). For an aisle j ∈ J , a PTS represents the parts of the picker tour from aisle 1
to aisle j and specifies the vertex parity of the vertices aj and bj located at the back and front of each
aisle j ∈ J , see Figure 1b. The vertex parities in combination with the number of connected components of
the PTS characterize the states of the DP. Ratliff and Rosenthal show that only seven states are relevant
for optimal picker tours. These states can be denoted as

S = {UU1c, 0E1c, E01c, EE1c, EE2c, 000c, 001c}.

Here, the first (second) symbol indicates the parity of the vertex aj (bj) with 0, U, and E standing for
not reached, odd (=uneven) degree, and even degree, respectively. The number of connected components
is shown by the last two symbols: The state 0c indicates an empty PTS, 1c one with a single connected
component, and 2c a subgraph with two connected components. Figure 1 shows an optimal picker tour with
its corresponding PTS and state space (V,E). Within an aisle, six different aisle actions can be performed,
namely

Eaisle
j = {1pass, 2pass, top, bottom, gap, void}.

Action 1pass (2pass) describes a single (double) traversal through the aisle (either direction), top (bottom)
stands for a traversal from the back (front) cross-aisle to the lowest (highest) relevant pick position and
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back, and gap for entering the aisle from both sides leaving a maximum length gap in the middle while
visiting all pick positions. When having an empty aisle, void represents no traversal through the aisle.

Regarding the cross-aisle action from aisle j+ to (j + 1)−, there are five different options to consider:

Ecross
j = {00, 11, 20, 02, 22}.

The first (second) digit gives the number traversals of the back (front) cross-aisle. Note that every o-d-path
in the state graph represents a feasible solution for the SPRP, where the origin and destination are the
states o = 000c at stage 0− and d = 001c at stage (m + 1)− = 4−, respectively. Moreover, each edge
e ∈ Ecross

j ∪Eaisle
j is associated with a cost describing the length of the component added to the tour when

performing the corresponding action. Heßler and Irnich (2022) have shown that the calculation of these
costs can be done with an effort of O (m+n) with n = |P | while solving the DP also takes linear effort with
the same complexity (Ratliff and Rosenthal, 1983).

3.2. Scattered Storage and the Extended State Space
For the SPRP-SS, some additional notation is required, since each article may now be stored at several

locations instead of having one unique pick position. Recall that qs denotes the quantity of article s ∈ S to
be collected and bsp denotes the supply (=number of SKUs) of s ∈ S at pick position p ∈ P . Furthermore,
let Pe denote the set of positions visited by an aisle traversal e ∈ Eaisle

j in aisle j ∈ J . Thus, bse =
∑

p∈Pe
bsp

is the quantity of article s ∈ S that can be collected when traversing the aisle via e. Edges e with a non-
negative supply of article s ∈ S are denoted by Es. For the sake of clarity, we distinguish between three
types of articles:

(O) articles available in several aisles in the warehouse,
(UA) articles s ∈ S available in a unique aisle, but with |Ps| > 1, and
(UP) articles that are only available at one unique position in the warehouse.

Note that looking at an arbitrary position in an aisle, different SKUs can be placed on the right-hand
side, left-hand side or, when stored in shelves, even vertically over one another. Still, different SKUs located
at one position in any of the described manners refer to the same pick position p ∈ P . Therefore, the number

n = |
⋃
s∈S

Ps| = |{p ∈ P : ∃s ∈ S with bsp > 0}| (1)

of relevant positions can be smaller than the number of pairs (s, p) ∈ S × P with a positive supply bsp > 0.
To incorporate the flexibility of not necessarily having to traverse all pick positions with demanded

articles in the warehouse, an extension of the state space of Section 3.1 is needed. Specifically, additional
aisle actions of type top, bottom, void, and gap must be considered, while all other aisle actions and cross-
aisle actions remain identical. For scattered storage with general demand, any aisle traversal e ∈ Eaisle

j

leaving out positions P
′

j ⊂ P in aisle j ∈ J is feasible if and only if∑
(s,p)∈Ps:p/∈P

′
j

bsp ≥ qs ∀s ∈ S (2)

holds.

Example 1. Figure 2a shows an instance of the SPRP-SS with three aisles J = {1, 2, 3} and four articles S =
{1, 2, 3, 4}. For simplicity, we assume unit supply, i.e., bsp = 1 for all s ∈ S, p ∈ Ps. Moreover, we assume
demands q1 = 3, q2 = 2, and q3 = q4 = 1. The resulting additional aisle actions are listed in Figure 2b.

For aisle j = 1, three additional aisle actions are to be considered. Standing at the back (front), it is
now possible to only traverse the aisle up to position i = 7 (i = 3), or skip the aisle entirely, since (2) holds
for an aisle action leaving out the position where article 2 (article 1) or both are stored. These additional
options yield in the aisle actions top(7), bottom(3), and void. For the second aisle, article 3 must be picked
up, since it is only available in one aisle so that no void action can be performed here, while also preventing
any additional top(i) traversal. Note that the additional bottom and gap options always traverse at least
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Figure 2: An instance of the SPRP-SS. The pick list contains four articles S = {1, 2, 3, 4} with unit supply
and demands q1 = 3, q2 = 2, and q3 = q4 = 1.

one pick position of article 1, since (2) would be violated otherwise. Therefore, bottom(1) is not allowed.
For aisle j = 3, article 4 is unique so that void, top(5), and top(8) become infeasible. Furthermore, all
traversals gap(i, k) can be disregarded if i and k are neighboring positions with a non-maximal gap.

The number of additional aisle actions in the extended state space is dominated by those of type gap(h, i).
Indeed, if a majority of the pick positions are located within one or a few aisles, there can be O (n2) aisle
actions of type gap(h, i). Therefore, since the original state graph had O (m) edges, the total number of
edges in the extended state space is bounded by O (m+ n2).

Due to the extension of the state space, an arbitrary o-d-path does not necessarily represent a feasible
solution to the SPRP-SS. The following network-flow formulation is considering this fact.

3.3. Network-Flow Formulation for the SPRP-SS
Formulation HI uses the above extended state space (V,E) to model the SPRP-SS as an o-d-shortest-

path problem with additional demand-covering constraints (DCCs). Variables xe ≥ 0 indicate the (unit)
flow for each edge E =

⋃
j∈J(E

aisle
j ∪Ecross

j ). Moreover, let ce be the cost of edge e ∈ E, i.e., the length of
the picker tour associated with the action described by e. This leads to the following binary model:

zSPRP-SS = min
∑
e∈E

cexe (3a)

subject to
∑

e∈δ+(σ)

xe −
∑

e∈δ−(σ)

xe =

 +1, if σ = o
−1, if σ = d
0, otherwise

∀σ ∈ V (3b)

∑
e∈Es

bsexe ≥ qs ∀s ∈ S (3c)

xe ∈ {0, 1} ∀e ∈ E (3d)

The objective (3a) minimizes the length of the picker tour. Flow conservation is modeled by constraints (3b),
where δ+(σ) and δ−(σ) denote the set of edges leaving and entering vertex σ ∈ V , respectively. The
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DCCs (3c) ensure that enough SKUs are collected for each article s ∈ S. The domain of the flow variables
is given by (3d).

Note that constraints (3c) can be strengthened by replacing bse with min{qs, bse} for all s ∈ S (we always
do this). Moreover, for each article s ∈ S of type UA, constraints (2) ensures that each aisle action of the
respective aisle collects a sufficient quantity of s. Therefore, constraints (3c) are redundant for articles of
types UP and UA. Note that every article of type UP is associated to a unique aisle.

The size of formulation HI, i.e., model (3), can be summarized as follows:

Property 1. Formulation HI has O (m + n2) variables, O (m + a) constraints, and O (an2) non-zero co-
efficients (recall that n denotes the number of possible pick positions and a = |S| denotes the number of
different articles to be collected).

Proof. The number of variables coincides with the number of edges in the extended state space which grows
in the square of the relevant pick positions and is bounded by O (m + n2). The number of constraints
is bounded by O (m + a), where constraints (3b) contribute the summand m and constraints (3c) the
summand a. The number of non-zero coefficients is bounded by O (m+an2), since the incidence matrix has
exactly 2|E| = O (m+ n2) non-zeros, and the demand-covering constraints (3c) have

∑
s∈S |Es| = O (an2)

non-zero coefficients.

Additionally, Heßler and Irnich (2024) define dominance rules to reduce the number of parallel edges in E.
Dominance leads to smaller state spaces and herewith a reduced number of variables in formulation HI. We
also apply dominance to reduce the edges in the state space and to accelerate the solution of formulation HI
by the MIP solver. Even with dominance, Property 1 is valid and it is straightforward to construct SPRP-SS
instances for which the presented bounds are sharp.

4. Linear-Size State Spaces

As stated in Property 1, the number of edges in the state space of Heßler and Irnich is bounded by
O (m + n2). It grows quadratically with the number n of relevant pick positions, as defined in Eq. (1).
Only the actions gap are responsible for this quadratic growth. Thus, we replace all parallel edges between
states connected via actions gap by a small subnetwork of linear size. This can be done in different ways.
We now present two types of subnetworks of linear size that can be included in the extended state space of
formulation HI to fully replace all of the gap actions.

4.1. Enlarged Gaps Network
Let σ, σ′ ∈ V be two vertices connected with an action gap in the state space G = (V,E). Moreover, let

j ∈ J be the associated aisle and let Ij denote the set of all relevant pick positions in this aisle (numbered
from 1 to C, bottom up). Depending on the state of σ also the actions top, bottom, and void may connect σ
with σ′, i.e., they are parallel edges. Figure 1a shows the details:

• For σ ∈ {UU1c, EE1c, EE2c}, actions gap, top, and bottom connect to the same vertex σ′.
• For σ = 0E1c, only action top connects to the same vertex σ′ as action gap.
• For σ = E01c, only action bottom connects to the same vertex σ′ as action gap.
• For σ = 000c, neither top nor bottom connects to the same vertex as gap.

The subnetwork that we construct includes all of the above parallel edges.
The basic idea is that two actions top(h) and bottom(i) are performed sequentially in the subnetwork so

that they replicate the respective action gap(h, i). The construction is done in three steps (Figure 3 shows
an example of a subnetwork):

1. Additional vertices vhi are introduced for each action gap(h, i) where h ∈ Ij and i ∈ Ij with h < i are
consecutive pick positions in the considered aisle j.

Moreover, one or two vertices are added to replicate the original actions bottom and top connecting
vertex σ with vertex σ′ (see above for which type of state this is relevant). For the original action
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bottom, the vertex vimax,M is added where M > imax = max Ij . For the original action top, the
vertex v0,hmin is added where hmin = min Ij > 0. Note that for σ ∈ {UU1c, EE1c, EE2c} both vertices
are included in the network. In case that the action void connects σ with σ′, it can be omitted in the
subnetwork.

2. For the actions bottom(h), edges are added to connect σ with vhi (ingoing edges of vhi). Similarly,
edges for the actions top(i) are added to connect vhi with σ′ (outgoing edges of vhi).

Actions bottom(0) and top(M) have a cost of 0, where M and 0 indicate that the aisle is not entered
from the top or the bottom, respectively.

3. Downward edges of cost 0 between the additional vertices created in the first step enable actions gap
with more space between the turning points. As a result, an action bottom(h) can be combined with
an action top(i) also for non-consecutive pick positions h and i.

For a given (original) state space G = (V,E), we denote by G′ = (V ′, E′) the state space that replaces all
actions gap, top, bottom, and void that are represented by parallel edges in G by the respective subnetwork.
By construction, the new state space G′ has O (m+ n) vertices and O (m+ n) edges.
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(b) Subnetwork EG for aisle j = 2 and the state of type
UU1c. The highlighted path (red/bold) corresponds to
gap(2,10) in Figure 3a. Gray edges can be omitted from
the subnetwork by dominance considerations.

Figure 3: Example for a network which can enlarge the gaps.

Example 2. Figure 3 visualizes a warehouse with aisles J = {1, 2, 3} and six articles S = {1, 2, . . . , 6} that
must be collected (unit demand, i.e., q1 = · · · = q6 = 1) together with the optimal picker tour. We consider
the second aisle j = 2 with five possible pick positions and the resulting subnetwork for the state σ = UU1c.

Dominance considerations can reduce the number of edges in the subnetwork. For example, the edge for
the action top (4) can be omitted, since article 5 would be collected twice, which is not necessary for unit
demand. The same is true for bottom (10).

Figure 3b and Example 2 are also helpful to highlight differences when either the original state space G
or the new state space G′ that includes the subnetworks are used within model (3). In formulation HI
(using G), the DCCs (3c) are redundant for articles of type UP and UA, i.e., s ∈ {1, 3, 5, 6} in the example.
However, the structure of the subnetwork allows to use invalid combinations of actions. For example, if
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articles s = 3 and s = 5 have no associated constraint (3c), then the action top(M) can be combined with
action bottom(0), which represents void and is not feasible due to (2). As a result, model (3) defined over
the new state space G′ is only valid for the SPRP-SS when all constraints of type (3c) are present for all
s ∈ S. This version of model (3) defines formulation EG that we compare against formulation HI (and a
third one defined in the next subsection). Even with more DCCs in formulation EG, the new formulation is
linear as stated in the following property:

Property 2. Formulation EG is of linear size, and it has O (m+ n) variables and O (m+ n) constraints.

Proof. The number of vertices and edges per subnetwork is proportional to the number of pick positions in
the respective aisle. Hence, the state space G′ has not more than O (m+ n) vertices and edges. Assuming
that a = |S| ≤ n, formulation EG has O (m+ n) variables and constraints.

The size of a model is only one factor that impacts the performance of a MIP solver that tries to solve
the model. A second factor is the strength of the linear relaxation. Comparing formulations HI and EG,
we can expect that formulation EG has a weaker linear relaxation, since the additional DCCs but not the
linear-size state space G′ ensure demand coverage for articles of type UA and UP (this allows LP solutions
in which, e.g., an action gap is combined with action void both with value 0.5). Hence, there exists a clear
tradeoff between model size and model strength. Only empirical tests can tell which of both formulations is
solved faster, see Section 5.

Property 3. The DCCs (3c) in Formulation EG are redundant for articles s ∈ S of type UA and UP.

4.2. Reduced Gaps Network
As the subnetwork EG, also the second subnetwork RG is used to replace parallel edges between two

vertices σ and σ′ describing actions gap (and top, bottom, and void depending on the state of σ). The
additional vertices of the RG network are constructed using the notion of non-extensible gaps (NEGs). A
feasible action gap(h, i) is an NEG, if no other action gap(h′, i′) with h′ ≤ h, i′ ≥ i, and (h′, i′) ̸= (h, i) is
feasible. This definition implies that if gap(h, i) and gap(k, ℓ) are NEGs, then either h < k and i < ℓ or
h > k and i > ℓ. Note that, depending on the state of σ, we also include the artificial positions 0 and M .
Formally, this requires the consideration of state-dependent position sets Ij for each aisle j ∈ J . For state
000c, we consider positions Ij without 0 and M ; for state E01c, positions Ij ∪ {0}; for state 0E1c, positions
Ij ∪ {M}; for the remaining states UU1c, EE1c, and EE2c, positions Ij ∪ {0,M}. For the sake of simplicity,
we will refrain from further formalizing this detail.

Also the construction of the subnetwork RG is done in three steps (Figure 4 shows an example of a
subnetwork):

1. Additional vertices whi are introduced for each NEG gap(h, i). Note that NEGs may have h = 0 or
i = M .

2. For each h ∈ Ij (or h ∈ Ij ∪{0} for some states, see above), the edge for the action bottom(h) is added
to connect σ with wh′i′ (ingoing edges of wh′i′) where (h′, i′) is the NEG with maximum index h′ ≤ h.
Similarly, for each i ∈ Ij (or i ∈ Ij ∪ {M} for some states, see above), the edge for the action top(i)
is added to connect wh′i′ with σ′ (outgoing edges of wh′i′) where (h′, i′) is the NEG with minimum
index i′ ≥ i.

Actions top(M) and bottom(0) have a cost of 0.

3. Upward edges of cost 0 between the vertices created in the first step enable actions gap with less space
between the turning points. As a result, an action bottom(h) can be combined with an action top(i)
also for pick positions h and i that do not correspond to an NEG.

For a given (original) state space G = (V,E), we denote by G∗ = (V ∗, E∗) the state space that replaces all
actions gap, top, bottom, and void that are represented by parallel edges in G by the respective subnetwork.
By construction, the new state space G∗ has O (m+ n) vertices and O (m+ n) edges.
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Figure 4: Subnetwork RG for aisle j = 2 and the state of type UU1c. The highlighted path (red/bold)
corresponds to gap(2,10) in Figure 3a. Gray edges can be omitted from the subnetwork by dominance
considerations.

Example 3. (cont’ed from Example 2) In Example 2, we focused on the aisle j = 2 and the state σ = UU1c
(see Figure 3). Under the unit-demand assumption, there are three NEGs (h, i), namely

• (0, 2) corresponding to the action top(2),
• (2, 10) corresponding to the action gap(2, 10), and
• (4,M) corresponding to the action bottom(4).

The three NEGs are to be considered in the construction of the RG network, which is shown in Figure 4.
We have three additional vertices w02, w2,10, and w4,M . In addition, there are six edges for possible ac-
tions bottom(h) and also six edges for possible actions top(i). In both cases, four of the six possible actions
are parallel edges in the subnetwork G∗.

As in Example 2, dominance allows to eliminate actions bottom(10) and top(4).

Using model (3) together with the new state space G∗ gives a formulation that is correct for articles s
of type UA and UP. The feasibility of the NEGs with respect to conditions (2) (by definition of an NEG)
ensures that every path through the subnetwork RG allows to collect a sufficient amount of these articles s.
There is no need to have the DCCs (3c) for them, i.e., they are surely redundant for articles of type UA
and UP. Hence, the new RG network heals one of the shortcomings that we identified for the EG network,
see Section 4.1.

However, some possible paths in the subnetwork RG do not describe reasonable actions gap(h, i). In
Figure 4, e.g., one of the actions bottom(h) for a cell h ∈ {4, 6, 8, 10} could be traversed first, and the edge
for top(2) for cell i = 2 afterwards. These actions “overlap” in the sense that the pick positions 2 and 4 (and
depending on h some more cells) are reached from the top as well as from the bottom. When assigning a
supply to these edges (this is what we do in model (3) when using the coefficients bse in the DCCs (3c)), this
supply would be counted twice when using such overlapping actions of the subnetwork RG. This is uncritical
for unit demand, but leads to an incorrect formulation for general demand.

We can summarize these observations for using model (3) together with the new state space G∗ defined
over the RG network, denoted as Formulation RG(3).

Property 4. Formulation RG(3) is a valid formulation for the SPRP-SS with unit demand. It is of linear
size, and it has O (m+n) variables and O (m+n) constraints. The DCCs (3c) are redundant for articles s ∈ S
of type UA and UP.

For the general-demand case, we present a modified MIP model for the SPRP-SS that uses two types of
variables: As before, binary variables xe for all edges in the state space describe the o-d-path. In addition,
continuous variables ysp describe, for each article s ∈ S and possible pick position p ∈ Ps, the amount that
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is collected. By bounding ysp ≤ bsp, it is ensured that supply from this position is not double counted. In
addition, let Ep denote the set of all edges and corresponding actions that traverse position p ∈ P . The new
model reads as follows:

zSPRP-SS = min
∑
e∈E

cexe (4a)

subject to
∑

e∈δ+(σ)

xe −
∑

e∈δ−(σ)

xe =

 +1, if σ = o
−1, if σ = d
0, otherwise

∀σ ∈ V (4b)

∑
e∈Ep

bspxe = ysp ∀s ∈ S, p ∈ Ps (4c)

∑
p∈Ps

ysp ≥ qs ∀s ∈ S (4d)

xe ∈ {0, 1} ∀e ∈ E (4e)
0 ≤ ysp ≤ bsp ∀s ∈ S, p ∈ Ps (4f)

The objective function (4a) and the constraints (4b) and (4e) remain identical to those of the first model (3).
The DCCs (3c) are reformulated into (4c) and (4d) making sure that a sufficient amount is collected and
no supply is double counted. The feasible domain for the supply variables is stated in (4f).

We denote by Formulation RG(4) the use of the new model (4) defined over the new RG network G∗.
We summarize what we know about this formulation:

Property 5. Formulation RG(4) is a valid formulation for the SPRP-SS (for both unit demand and general
demand). It is of linear size, and it has O (m + n) variables and O (m + n) constraints. The DCCs are
redundant for articles s ∈ S of type UA and UP, i.e., the corresponding variables ysp and constraints (4c),
(4d), and (4f) can be omitted.

Strength of Linear Relaxations. For comparing different formulations to the same problem, not only the size
of the respective models is important. For unit-demand instances of the SPRP-SS, we will now show that
the linear relaxation of formulation RG(3) is at least as strong as the one of formulation RG(4). Let z

RG(3)
LP

and z
RG(4)
LP denote the objective value of the linear relaxation of formulation RG(3) and RG(4), respectively.

Property 6. For all instances of the SPRP-SS with unit-demand, the relation z
RG(3)
LP ≥ z

RG(4)
LP holds.

Proof. Recall that in the unit-demand case, qs = 1 for all s ∈ S as well as bse = 1 and bsp = 1 for all e ∈ Es

and p ∈ Ps, respectively. Therefore, we can always use bse instead of bsp for the positions p ∈ Ps an edge
e ∈ Es visits.

Let the flow x̄ = (x̄e) ∈ [0, 1]E denote a feasible solution to the linear relaxation of RG(3). We can prove
the statement by showing that this solution can be translated into a feasible solution to the linear relaxation
of RG(4) with the same (or lower) cost. To this end, let

ȳsp = min

1,
∑
e∈Ep

x̄e


for all s ∈ S and p ∈ Ps.

With these definitions it is guaranteed that the solution (x̄, ȳ) satisfies all constraints of (4), where only
the fulfillment of constraints (4d) needs to be shown. We distinguish two cases for each article s ∈ S: If
ȳsp = 1 for at least one of the positions p ∈ Ps, we trivially have

∑
p∈Ps

ȳsp ≥ 1, i.e., constraint (4d) holds
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for article s. Otherwise, min{1,
∑

e∈Ep
x̄e} =

∑
e∈Ep

x̄e for all p ∈ Ps. It follows:

∑
p∈Ps

ȳsp =
∑
p∈Ps

min

1,
∑
e∈Ep

x̄e


=

∑
p∈Ps

∑
e∈Ep

x̄e

=
∑
p∈Ps

∑
e∈Ep

bsex̄e

≥
∑
e∈E

bsex̄e ≥ 1,

where the last inequalities follow from the facts that each edge e with bse = 1 may appear more than once
in the double summation, and (3c) holds for x̄, respectively. Therefore, (4d) is also fulfilled in this case,
which completes the proof.

Note that the above proof does not hold for the general-demand case, because we cannot exploit bsp = bse
for all e ∈ Ep and all s ∈ S.

5. Computational Results

In what follows, we describe the generation of the benchmark instances used in the following experi-
ments, we compare the linear relaxations of formulations HI, EG, and RG, we report results for improved
formulations in which only some (promising) parts of the original state spaces are replaced by subnetworks,
and we finally compare the best formulations as integer programs.

5.1. Benchmark Instances
The instances of the SPRP-SS are generated as described in detail in Heßler and Irnich (2024) and Lüke

et al. (2024). An instance is characterized by a combination of (m,C, a, α), where m denotes the number
of aisles, C the number of locations per aisle, a the number of different articles to be collected, and α the
scatter factor. The scatter factor describes the average number of pick positions at which an article is stored
in the warehouse. We assume a classical single-block rectangular warehouse with m = 10 aisles and C = 50
locations per aisle. Additionally, we vary the number of different articles that need to be collected, i.e.,
a ∈ {30, 50, 100, 200}.

For the generation of a pick list and for the assignment of articles to pick positions, we use the following
approach that is realistic and simpler than what has been used in Lüke et al. (2024) where class-based storage
policies were analyzed. First, we randomly assign a different pick position p ∈ P to every article s ∈ S
defining a pair (s, p) ∈ S × P . Second, another (α − 1)a pairs (s, p) are randomly drawn while making
sure that no identical pairs are generated. This procedure ensures that each article s ∈ S can be found
at least once in the warehouse, and that it can be collected from α different positions on average. Due to
randomness, some articles s ∈ S can be found at more than α positions while others at fewer positions. For
the following studies, we use a scatter factor of α = 5.

In addition, we generate instances with unit demand, i.e., qs = 1 for all s ∈ S, and instances with general
demand. For the latter, we first draw a random supply bsp ∈ {1, 2, 3} for each pair (s, p). Demands qs
are then drawn randomly from {1, 2, . . . ,min{6,

∑
p bsp}}. In particular, all general-demand instances are

feasible by construction.
In order to produce statistically significant results, we generate 100 instances per combination (m,C, a, α).

In total, the benchmark set comprises 2 ·4 ·100 = 800 instances (factor 2 for unit and general demand; 4 com-
binations (m,C, a, α)). The benchmark is available at https://logistik.bwl.uni-mainz.de/research/
benchmarks/.
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5.2. Linear Relaxation Results
We first analyze empirically the strength of the linear relaxation of the formulations HI, EG, and RG.

Recall that, for a given instance of the SPRP-SS, zSPRP-SS is the objective value. A lower bound is given
by the objective value of the linear relaxation of the respective formulation, in the following denoted by
zLP. The optimality gap is defined as 100 · (zSPRP-SS − zLP)/zSPRP-SS, and it describes the strength of a
formulation.

Table 1: Optimality gap

Formulation general demand unit demand

DCCs for a = 30 50 100 200 avg. a = 30 50 100 200 avg.

HI O 4.83 3.47 1.71 0.33 2.58 6.30 8.31 8.60 7.76 7.74
EG O, UA, UP 8.37 8.83 7.88 5.63 7.68 6.39 8.41 8.63 7.76 7.80
RG(3) O n.a. n.a. n.a. n.a. n.a. 6.40 8.42 8.63 7.76 7.80
RG(4) O 5.28 3.69 1.82 0.35 2.79 12.21 14.03 13.19 11.09 12.63

Table 1 shows average optimality gaps (per group of 100 instances) for the formulations HI, EG, RG(3),
and RG(4). Gaps are not available (“n.a.”) for formulation RG(3) and general demand, since the model is
not valid in this case. The linear relaxation of formulation HI always achieves the smallest gaps. This is not
only true on average, but also for each single SPRP-SS instance and in general. This results from the fact
that every feasible flow x̄ = (x̄e) ∈ [0, 1]E of the LP-model HI can be translated into a feasible flow of the
other LP formulations. We refrain from a formal proof of this statement as the translation is trivial.

For the unit-demand case, we can observe the direct consequences of Property 6. Indeed, formula-
tion RG(3) can be strictly stronger than formulation RG(4) in the unit-demand case. (The large difference
can be explained by the fact that for an edge e that covers two or more positions in which an article s is
stored the relation bse = 1 <

∑
p∈P :e∈Ep

bsp holds. Note that bse is used in model (3) and bsp in model (4).)
Since formulation RG(4) is composed of more variables and constraints, it is strictly dominated. As a
consequence, we will only consider the stronger formulation RG(3) for SPRP-SS with unit demand. Since
model (4) is the only choice for general demand and the RG network, we can omit the superscript and refer
to formulation RG in the following (to lighten the notation).

Comparing formulations EG and RG(4), we see from Table 1 that neither formulation dominates the
other with regard to the linear relaxation. Average optimality gaps can differ substantially here, see a = 100
with gaps of 7.88 and 1.82 percent for general demand and gaps of 8.63 and 13.19 percent for unit demand,
respectively. In contrast, for the unit-demand SPRP-SS instances that we consider, the average optimality
gaps of formulations EG and RG(3) are very close.

5.3. Vertex Factor
The replacement of parallel edges of the original network by subnetworks of types EG and RG is reason-

able only if the size of the new network is smaller. Indeed, less edges in the resulting EG and RG networks
imply less variables in the resulting formulations EG and RG, respectively. However, the subnetworks intro-
duce additional vertices vhi or whi, one for each pick position or NEG, see Sections 4.1 and 4.2. Additional
vertices require additional flow conservation constraints (3b) and (4b). Therefore, we propose to fine-control
the replacement process by deciding, for each set of parallel edges separately, whether the replacement is
performed or the parallel edges of the original network are kept. In this subsection, we will computationally
analyze different options of controlling the replacement process.

To this end, for a subset of parallel edges under consideration, let korig and knew denote the number of
edges in the original and the new network. In addition, let ℓnew

+ denote the number of additional vertices vhi
or whi that would have to be included if the new replacement were performed. We use the condition

knew + fℓnew
+ < korig
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to decide on the replacement, where the vertex factor (VF) f estimates how strong the impact of the
number ℓnew

+ of additional vertices is. Furthermore, we use the alternative conditions knew + (ℓnew
+ )2 < korig

(denoted as quadratic) and knew + (ℓnew
+ )3 < korig (cubic) to simulate a very high impact of the additional

vertices.

Table 2: Average Percentage of Edge Reduction, Replacements depending on VF f or rules quadratic and
cubic.

Formulation general demand unit demand

VF f a = 30 50 100 200 avg. a = 30 50 100 200 avg.

EG 0 34.36 45.67 53.94 47.80 45.44 47.67 63.02 75.65 81.05 66.85
1 32.28 44.12 52.78 45.79 43.74 47.15 62.99 75.64 81.05 66.71
2 26.69 39.28 48.94 39.66 38.64 44.42 62.69 75.61 81.05 65.94
3 19.38 33.20 43.01 31.08 31.67 36.97 61.80 75.55 81.04 63.84
5 5.01 20.47 28.54 18.61 18.16 14.32 55.79 74.34 80.68 56.28
10 0.00 0.61 8.91 2.62 3.03 0.00 3.54 65.61 72.79 35.48

RG 0 48.66 59.17 66.53 62.34 59.17 59.96 72.21 81.97 86.13 75.07
1 48.52 59.10 66.51 62.31 59.11 59.95 72.21 81.97 86.13 75.06
2 48.16 58.94 66.43 62.19 58.93 59.94 72.21 81.97 86.13 75.06
3 47.69 58.74 66.33 62.03 58.70 59.92 72.21 81.97 86.13 75.06
5 46.40 57.85 65.92 61.06 57.81 59.88 72.19 81.97 86.13 75.04
10 42.09 55.13 63.70 56.36 54.32 59.41 72.17 81.97 86.13 74.92

quadratic 47.50 58.14 65.29 57.66 57.15 59.94 72.20 81.97 86.13 75.06
cubic 44.64 52.76 55.22 30.62 45.81 59.88 72.18 81.96 86.12 75.03

Table 2 shows the average percentage of edge reduction, i.e., 100 · (1− (|E|− |Enew|)/|E|), where Enew is
the set of edges of the resulting network EG or RG. As before, the results are grouped by network type (EG
or RG), the number a of different articles to pick, and the replacement condition used. Please note that the
replacement rules quadratic and cubic did not significantly change the original network when subnetworks
of type EG were tested. As a consequence, we do not report results for EG combined with quadratic and
cubic. The most important results are:

(i) The reduction is stronger for the subnetworks RG than for the subnetworks EG.
(ii) Reductions increase with a, with the exception of general demand and a = 200, where one can observe

a decline.
(iii) For the subnetworks EG, an increasing VF f strongly impacts the percentage reduction.
(iv) For the subnetworks RG, the respective reduction is moderately decreasing with an increasing VF f .

Table 3 uses the identical grouping and shows the average computation times of solving the formula-
tions EG and RG, respectively. Compared to the percentage of arcs reduced (Table 2), the computation
times are not directly related to the percentage reduction. This is a strong hint that also the number of
vertices is important. However, none of the replacement rules and values of the VF f is a clear winner. For
general demand, it seems that for smaller a = 30 and 50 the rule quadratic or a large VF f are advantageous
for both types of networks EG and RG, while for larger a = 100 and 200 a smaller VF f leads to short
computation times. For unit demand and network EG, it is difficult to give a good recommendation for the
choice of VF f . In contrast, for unit demand and network RG, computation times are almost independent
of the choice of VF f . Summarizing, Table 3 shows that using a small vertex factor between 0 and 2 often
leads to the smallest times (over all replacement rules). As a consequence, we will use the replacement rule
based on vertex factor f = 1 for the final experiments.

Finally, Table 3 shows that average computation times for subnetworks RG are always smaller than the
corresponding times for subnetworks EG. Especially for general demand and a = 100 and 200, differences
are substantial. We attribute the better performance of formulation RG in these cases of general demand
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Table 3: Average Computation Times [in milliseconds], Replacements depending on VF f or rules quadratic
and cubic.

Formulation general demand unit demand

VF f a = 30 50 100 200 avg. a = 30 50 100 200 avg.

EG 0 238 474 977 1158 712 199 456 1100 2197 988
1 222 437 971 1259 722 205 452 1099 2105 965
2 220 405 907 1397 732 198 452 1092 2195 984
3 218 378 877 1553 756 210 441 1092 2190 983
5 213 397 883 1685 795 245 469 1116 2104 984
10 204 397 894 1884 845 178 673 1448 2839 1284

RG 0 191 248 375 596 353 160 347 827 1553 722
1 189 248 376 600 353 160 349 830 1552 723
2 188 244 372 603 352 158 348 829 1555 722
3 188 246 377 614 356 159 349 829 1554 723
5 188 249 376 644 364 159 348 830 1557 724
10 189 271 401 776 409 164 349 830 1556 725

quadratic 179 244 374 748 387 160 347 828 1553 722
cubic 184 279 502 1404 592 160 348 829 1557 724

to the stronger linear relaxation which leads to larger search trees to be worked through by the MIP solver,
see Table 1.

5.4. Integer Solutions
In the final computational experiments, we compare all three formulations HI, EG, and RG using the

vertex factor f = 1 for the latter two. For formulations HI and RG, it is still not clear whether redundant
DCCs for articles of type UA and UP should be used. To analyze this, we use three settings where DCCs
are included either only for articles of type O, or of types O and UA, or for all types. Table 4 shows the
average computation times of the MIP solver for the seven formulations. The results can be summarized

Table 4: Average Computation Times [in milliseconds], Final Setup with VF f = 1

Formulation general demand unit demand

DCCs for a = 30 50 100 200 avg. a = 30 50 100 200 avg.

HI O 212 391 933 1933 867 183 632 2638 8165 2905
O, UA 216 402 996 2048 916 182 638 2646 8986 3113

O, UA, UP 213 400 957 1997 892 182 621 2574 7573 2737

EG O, UA, UP 222 437 971 1259 722 205 452 1099 2105 965
speedup ·0.90 ·0.93 ·1.13 ·1.53 ·1.10 ·0.94 ·1.36 ·2.24 ·3.40 ·1.77

RG O 189 248 376 600 353 160 349 830 1552 723
O, UA 189 247 378 609 356 156 342 840 1599 734

O, UA, UP 190 245 365 599 350 155 338 808 1426 682
speedup ·1.02 ·1.55 ·2.56 ·3.18 ·1.89 ·1.22 ·1.84 ·3.11 ·4.87 ·2.42

Note: Speedups are computed as geometric means of ratios of computation times relative to formulation HI
with all DCCs (O, UA, UP).

as follows:
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(i) For general and unit demand, formulation RG is always solved fastest compared to formulations HI
and EG. This is true for all values a and in the average (see column avg.).

(ii) Adding redundant DCCs (for articles of type UA and UP) accelerates the solution process for both
formulation HI and formulation RG in the unit-demand case. Computation times for the general-
demand case are not impacted significantly by the choice of DCCs.

Additionally, we compare the three formulations using the setting with all DCCs (for articles of types O,
UA, and UP) by computing a speedup factor. The baseline is always formulation HI which represents the
status quo. Thus, Table 4 presents speedup factors for formulations EG and RG, which are computed as
geometric means of the ratios tHI(I)/tEG(I) and tHI(I)/tRG(I) where tHI(I), tEG(I), and tRG(I) are the
computation times of the MIP solver using the respective formulation for solving SPRP-SS instance I. Any
speedup value greater than one indicates that the new formulation is superior to the status quo for the
subgroup of instances.

These numbers clearly indicate that already formulation EG can be advantageous compared to formu-
lation HI. The speedup for formulation RG is even higher with an overall speedup factor between 1.02 and
3.18 for general demand and between 1.22 and 4.87 for unit demand. Notably, speedups are higher for larger
instances with more articles to be collected, i.e., for larger values of a.

6. Conclusions

In this paper, we considered the SPRP-SS and its out-of-the-box solution with a MIP model and MIP
solver. The approach we take is that of Heßler and Irnich (2024) who first build an extended network (inspired
by Ratliff and Rosenthal’s dynamic program) and then solve a shortest-path problem with additional DCCs
with a MIP solver. This shortest-path network contains parallel edges representing alternative traversal
actions of type gap, bottom, and top within the aisle under consideration. The two new formulations EG
and RG, which have been developed here, replace sets of parallel edges of the aforementioned types by
generally smaller subnetworks. The acronyms signify the possibility to enlarge gap (EG) actions or to
reduce gap (RG) actions. To be more precise, if a path through the subnetwork can represent the action
gap(h, i), then it can also represent gaps of type gap(h′, i′) with h′ ≤ h or i′ ≥ i in the subnetwork EG. For
the subnetwork RG, the reduction of the action gap(h, i) into gap(h′, i′) is enabled where h′ ≥ h or i′ ≤ i.

We analyzed the resulting formulations EG and RG and derived several theoretical properties of the
formulations. To accommodate general demand, modifications were required to the structure of the MIP
model for subnetworks EG, where we could still ensure that the resulting model remains linear. In particular,
we showed that all new MIP models are linear in the number m of aisles and in the number n of possible
pick positions. In contrast, the MIP model of Heßler and Irnich (2024) is quadratic in n.

We studied the performance of the MIP solver-based approach with the new formulations in three types
of computational experiments, in which 800 SPRP-SS instances were solved with up to a = 200 articles.
First, the linear relaxations of the new formulations EG and RG have similar integrality gaps in case of unit
demand, but they are weaker than that of the formulation of Heßler and Irnich (2024) in case of general
demand. Second, the reduction in network size is largest for the new formulation RG, where typically more
than two-thirds of the edges can be reduced. These reductions translate to improved computation times
of the MIP solver. Third, for a wide range of vertex factors, the simplest replacement rule (we use f = 1,
i.e., we perform the replacement whenever the resulting network has at least one edge less) was identified
working reasonably well, leading to substantially smaller MIP computation times for formulation EG and
especially for formulation RG compared to formulation HI. Overall, compared to the MIP of Heßler and
Irnich (2024) the average speedup is by the factor of 1.89 for general demand and of 2.42 for unit demand
for the SPRP-SS instances in the testbed. For the largest instances with a = 200 articles, average speedups
reach the factors of 3.18 and 4.87, respectively. In absolute numbers, average computation times, even for
these largest instances, are below two seconds.

The new modeling approach may help to develop superior models for integrated problems in warehouse
operations management, especially those where many instances of a problem similar to the SPRP-SS must
be solved as subproblems multiple times.
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