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Abstract

This paper investigates the b-block single picker routing problem with scattered storage (b-SPRP-SS). For a
parallel-aisle warehouse comprising b blocks, the b-SPRP-SS asks for the determination of a picker tour that
minimizes travel distance while collecting all articles from a given pick list. Scattered storage, where articles
can be stored at multiple locations, substantially increases the problem’s complexity by coupling the selection
of collection points with routing decisions. Existing research on the 5-SPRP-SS has predominantly focused
on single-block and two-block warehouse layouts. To address this gap, we propose a novel formulation for
warehouses with more than two blocks. The formulation is inspired by the dynamic-programming state
spaces that Ratliff and Rosenthal introduced for the single-block case and Roodbergen and de Koster for the
two-block case. The new state space is a relaxed one that omits connectivity information, thereby aggregating
multiple original states into a single relaxed state. This relaxation significantly reduces computational
complexity, although it may lead to disconnected tour fragments. To ensure route connectivity, the problem is
solved using a branch-and-cut algorithm which dynamically adds subtour-elimination constraints. Extensive
computational experiments demonstrate that the proposed approach is effective and outperforms the only
other competitive exact approach from the literature that relies on a transformation into a generalized
traveling salesman problem.
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1. Introduction

Warehouse activities include receiving, storing, picking, packing, and shipping operations (Gu et al.,
2007). Excellent surveys introduce warehouse operations planning, including topics such as storage assign-
ment, warehouse layout planning, zoning, routing, and batching (Boysen et al., 2019; van Gils et al., 2018).
In this work, we address picker routing in manual (non-automated) warehouses where pickers move through
the warehouse in order to collect articles from the storage locations called pick positions (picker-to-parts).
De Koster et al. (2007) highlight that more than 80% of all order-picking systems in Western Europe are
low-level picker-to-parts picking systems. Order picking denotes the process of retrieving inventory items
from their storage locations in response to specific customer requests (de Koster et al., 2007; Masae et al.,
2020). Manual order picking is certainly very labor-intensive, and the literature gives different estimations
for the effort: Typically, 60% of all labor activities in the warehouse result from order picking, and its cost
can be estimated to be as much as 55% of the total warehouse operating expense (Drury, 1988; Tompkins
et al., 2003). Frazelle (2002) estimates that order picking contributes to up to 50% of the total warehouse
operating costs. These figures explain why research on order picking operations is extensive and of high
practical relevance.

*Corresponding author.
Email addresses: irnichQuni-mainz.de (Stefan Irnich), lueke@uni-mainz.de (Laura Liike)

Technical Report LM-2025-04 November 12, 2025



In its basic form, the single picker routing problem (SPRP) seeks a minimum-length picker tour given
a single-block parallel-aisle warehouse with the pick positions from where articles must be collected. The
SPRP can be considered solved: On the one hand, the seminal work of Ratliff and Rosenthal (1983) shows
that a minimum-length picker tour can be computed with dynamic programming (DP) in linear time (Hefler
and Irnich, 2022). On the other hand, the SPRP is practically well-solved with routing policies that are
rule-based heuristics such as traversal (a.k.a. S-shape), midpoint, largest gap (Hall, 1993), return, composite
(Petersen, 1997), and combined (Roodbergen and de Koster, 2001b). The application of heuristic routing
policies is well justified in settings where pickers cannot perform all types of optimal tours or when optimal
tours are complicated, counterintuitive, or difficult to memorize. Instead, pickers perform tours defined by
some simple rules.

In this work, we consider the exact solution of the picker routing problem defined over a parallel-aisle
warehouse with multiple blocks and scattered storage, which means an article may be stored at more than one
pick position. The scattered storage (or mixed shelves, Weidinger, 2018) strategy adds a decision level to the
problem, since it must be decided from which pick position an article is collected. We denote this problem
as the b-block single picker routing problem with scattered storage (b-SPRP-SS), where b > 1 describes the
number of blocks.

Concerning the classical picker routing problem without scattered storage in multi-block warehouses,
Prunet et al. (2025) showed that it is strongly NP-hard. Several approaches have been presented in the last
decade for this problem: For the case of b = 2, the DP algorithms of Roodbergen and de Koster (2001a)
can be used to determine an optimal picker tour. The solution principle is a direct extension of the DP
algorithm of Ratliff and Rosenthal. The former requires the distinction of 25 instead of only seven different
states per stage used in the latter. This is, however, irrelevant to the worst-case complexity: as shown by
Hefler and Irnich (2022), the DPs can be constructed and solved in linear time O (m + n), where m is the
number of aisles and n the number of pick positions.

For b =1 and b = 2 blocks, an approach based on mized-integer programming (MIP) has been recently
presented by Saylam et al. (2024). The SPRP is formulated as a variant of the arc routing problem, where
the traditional subtour-elimination constraints are omitted and replaced by problem-specific disconnectivity
constraints. To speed up the MIP solution, the disconnectivity constraints are dynamically added when
violated so that the MIP solver implements a branch-and-cut algorithm.

For the multi-block case without scattered storage, i.e., when the number b of blocks can exceed two
and is considered as part of the problem instance’s input data, Celik and Siiral (2018) provided an excellent
overview of the problem complexity, including a detailed overview of related problems (in addition, they
present and analyze a graph theory-based heuristic). Straightforwardly, the b-SPRP can be modeled and
solved as a (Steiner vertex) traveling salesman problem (TSP). However, a TSP-based approach does not
exploit the rectilinear layout of the warehouse.

In contrast, Cambazard and Catusse (2018) considered the Steiner TSP over a rectilinear graph and
provided an extension of Ratliff and Rosenthal’s DP. For n points lying on A different horizontal lines, their
DP can be solved in O (nh5") time. As a consequence, Pansart et al. (2018) showed that a similar DP can
be defined for the 6-SPRP. Although being better than the other MIP-based solution approaches that they
tailor to b-SPRP by using Steiner TSP formulations, the DP fails for instances with more than b = 10 blocks
(more precisely, the experiments are performed for b € {3,6,11}, so that the behavior for 7 < b < 10 is
unclear).

A generic exact algorithm for picker routing in multi-block warehouses that outperforms the one by
Pansart et al. (2018) has been presented by Schiffer et al. (2022). They use a layered graph algorithm
that can also be used within a framework, which can include additional attributes such as multiple drop-off
points, dynamic batching policies, and cartless subtours.

Valle et al. (2017) proposed a branch-and-cut algorithm originally designed to address the joint order
batching and picker routing problem, wherein customer orders are grouped into capacity-constrained batches
to minimize the total travel distance required for picking within a warehouse. This approach can also be
adapted to solve the standalone b-SPRP. Using this approach, instances involving up to five cross-aisles have
been solved to optimality.

Apart from the exact solution methods, there are also some heuristic routing strategies for multi-block
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warehouses. Traversal, largest gap, and combined are heuristics originally designed for single-block ware-
houses which were adapted by Roodbergen and de Koster (2001b) for the multi-block case. Routing heuristics
exclusively for multi-block warehouses are aisle-by-aisle (Vaughan, 1999) and no-reversal (Valle et al., 2017).
Theys et al. (2010) formulated the SPRP in multi-block warehouses as TSP and solved it heuristically. To
do this, they used heuristics originally designed for the TSP. Although these do not use the advantages of
the warehouse layout, they can be used for an arbitrary number of blocks without adjustment.

So far, picker routing with scattered storage has been primarily considered for b = 1 in the literature.
Therefore, the problem is referred to as the single picker routing problem with scattered storage (SPRP-SS) in
single-block warehouses, or rather, when it does not explicitly describe the multi-block case. Already Singh
and van Oudheusden (1997) demonstrated that the SPRP-SS is a special case of the traveling purchaser
problem (TPP). One year later, Daniels et al. (1998) formulated the problem based on the TSP and proposed
a tabu search heuristic, representing one of the first algorithmic contributions specifically to the SPRP-SS.
Despite its practical significance, research on picker routing with scattered storage remained limited for
many years. Gu et al. (2007) explicitly noted this gap, emphasizing the research potential of the problem. It
was only in the following decade that more systematic investigations emerged. Weidinger (2018) proposed a
two-stage heuristic: in the first stage, pick positions are selected based on specific alternative rules, followed
by the application of the Ratliff and Rosenthal (1983) DP algorithm for the resulting routing problem in the
second stage. To analyze the gap to the optimal solution, they also proposed an MIP, which is solved by a
solver. Weidinger et al. (2019) extended the heuristic to incorporate multiple depots. Another MIP approach
for single-block parallel-aisle warehouses was introduced by Goeke and Schneider (2021); it outperforms that
of Weidinger (2018).

The current state-of-the-art exact method is that of Hekler and Irnich (2024), who presented a generic
approach to extend DP state space to incorporate scattered storage (for an overview, see Table 1 in Hefler
and Irnich, 2024). Their computational study included the extension of the state spaces of Ratliff and
Rosenthal and Roodbergen and de Koster, i.e., it covers the single-block and two-block cases. The final
algorithm formulates an MIP model that can be solved using any type of IP solver. Recently, this approach
has been refined by Liike et al. (2025) who present a linear-size model that reduced the number of parallel
arcs compared to the model of Hefler and Irnich (2024). The benefit of this model however degrades when
the number of blocks increases. Liike et al. (2024) explored the application of rule-based routing strategies,
including traversal, midpoint, largest gap (Hall, 1993), return, and composite strategies (Petersen, 1997)—
which are traditionally used for the SPRP. Their findings confirm that even when the routing subproblem
is simplified via rules, the overall SPRP-SS remains NP-hard.

Concerning picker routing in multi-block warehouses with scattered storage, to the best of our knowledge,
only Haouassi et al. (2025) and Su et al. (2023) propose exact approaches to solve the b-SPRP-SS. Haouassi
et al. (2025) use a logic-based Benders decomposition method to solve the SPRP-SS in warehouses with
two and three blocks and pick lists with not more than 30 articles. In addition, they adapt the approach of
Schiffer et al. (2022) to warehouses with scattered storage. The two approaches solve two and five instances
of a total of 16 instances for the 3-block setting within a time limit of 300 seconds. Su et al. (2023) propose
a MIP-based approach, which is not compared to any other solution approach for the SPRP-SS. They
solve small and medium-scale instances with two and five blocks. Wildt et al. (2025) solve the b-SPRP-SS
heuristically. With the help of known transformation schemes, they convert the problem into a TSP and
solve it with standard solvers for the TSP. Since the number of blocks does not affect the transformation of
the b-SPRP-SS into a TSP, they also solve multi-block instances.

The b-SPRP-SS with unit demand, i.e., when only one unit of every article is requested, is a special case of
the generalized traveling salesman problem (GTSP), as already mentioned by Daniels et al. (1998). The use
of an GTSP algorithm is convenient, but any information about the warehouse layout is not algorithmically
exploited. HeRler and Irnich (2024) used a re-implementation of the branch-and-cut algorithm of Fischetti
et al. (2002) to compare their approach for the 2-SPRP-SS.

1.1. Definition of the b-SPRP-SS
We assume that the warehouse layout is given and is that of a multi-block warehouse with parallel aisles.
We denote the set of aisles by J = {1,2,...,m} and number the aisles j € J from left to right. The
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blocks are numbered from back (=top) to front (=bottom) by k € B = {1,2,...,b}. Each block k € B in
each aisle j € J allows picking from the sub-aisle (j, k), which is separated by the two cross-aisles k and
k+1e K ={1,2,...,b,b+ 1} that lie perpendicular to the aisles, see Figure 1. The warehouse is equipped
with a depot (I/O point) located at an intersection point of an aisle j € J and cross-aisle k € K. Articles are
stored at the pick positions denoted by p € P throughout the warehouse. We assume that a pick list with
articles S is given. As scattered storage is applied, each article may be stored at several pick positions. The
pick list specifies the demanded number ¢, for each article s € S. We distinguish two cases: If the demand
for each article is one, i.e., g = 1 for all s € S, this is referred to as the unit-demand case. In particular,
only a single pick position storing the demanded article needs to be visited. In contrast, if the demand for
some or all articles of the pick list is greater than one, this is known as the general-demand case. In the
general-demand case, several pick positions may need to be visited to fulfill the demand of an article. The
b-SPRP-SS seeks a minimum-length picker tour that starts and ends at the depot and collects all articles of
the pick list in the demanded quantities. Figure 1 shows a small instance with three blocks, four cross-aisles,
five aisles, and 10 = | S| different articles to be collect. An optimal solution for the unit-demand case is also
shown.

J=1 2 3 4 5
cross-aisle 1
8
block 1 —
4 6
O O O O cross-aisle 2
g 5
1
block 2 1
4
O O cross-aisle 3
6 8
block 3 — —
7
7
@, cross-aisle 4

Figure 1: Solution of a 3-SPRP-SS instance with four cross-aisles and five aisles.

1.2. Contributions

The contributions of this paper can be summarized as follows:

e We present a new network-flow formulation of the b-SPRP-SS. This formulation enforces three key
properties of a tour graph, namely that all intersection points between aisles and cross-aisles must
have an even vertex degree, that the tour visits sufficiently many pick positions to fulfill demand, and
that the tour graph is connected.

e This formulation is solved with a branch-and-cut algorithm, where subtour-elimination constraints are
added dynamically to guarantee that the resulting picker tour is connected.



e We compare our new branch-and-cut algorithm with a GTSP solver that is also based on branch-and-
cut. We outline the limitations of our approach and also show that it is a superior exact algorithm
when warehouses are relatively small, but many scattred articles need to be collected.

1.8. Structure

Section 2 defines the new relaxed state space for the b-SPRP-SS,; starting from classical state spaces
for SPRP variants, introducing parallel edges to capture options resulting from scattered storage, and
highlighting the need for a relaxation when the number of blocks exceeds two. The formulation of the
b-SPRP-SS with an exponential class of subtour-elimination constraints is presented in Section 3. Section 4
presents the associated branch-and-cut algorithm. Computational results are presented and discussed in
Section 5. The paper closes with final conclusions in Section 6.

2. The Relaxed State Space for the k-SPRP-SS

Our MIP-based solution approach relies on the construction of a state space, over which a shortest-path
problem with additional demand-covering constraints and connectivity constraints is solved. The state space
is an extension of Ratliff and Rosenthal or Roodbergen and de Koster (2001a)’s state space, incorporating
additional transitions needed to account for scattered storage. In order to make this paper at hand self-
contained, we start in Section 2.1 with the description of the classical state spaces of Ratliff and Rosenthal
and Roodbergen and de Koster (2001a). Subsequently, the additional transitions as introduced by Hefler
and Irnich (2024) are presented in Section 2.2. The relaxed state space that we use for the k-SPRP-SS is
presented in Section 2.3.

2.1. Classical State Spaces

The DPs of Ratliff and Rosenthal (1983) and Roodbergen and de Koster (2001a) solve the SPRP in
warehouses without scattered storage. They construct partial solutions, so-called partial tour subgraphs
(PTSs), from left to right. We describe the state space as a directed graph (V, E) consisting of a set of
vertices V and directed edges E. Each vertex v € V is a combination of a stage and a state. The stage
denotes the furthest (sub-)aisle (aisles ordered from left to right, blocks from top to bottom) included in the
PTS. The state encodes structural information about the PTS.

As the states are of great relevance in our approach, we will discuss them in more detail. The notation
of a state consists of two parts. The first part describes the parity of each right-most intersection point
(between cross-aisle and sub-aisle) of the PTS. The distinction is made between odd (=uneven) degree, even
degree, and a degree of zero, denoted as U, E, and 0, respectively. More precisely, the intersection points of
an aisle are described one after the other from cross-aisle 1 to cross-aisle b+ 1. This means the first part of
a state has always as many symbols as cross-aisles exist.

The second part of the state describes the connected components of the PTS. The state shows how many
components it consists of, and (if more than one component exists) also how the components are divided
between the blocks, if this information cannot be derived from the parity of the intersection points.

For example, the set of states for a single-block warehouse is defined as

., = {Uu.1,0E.1,E0.1,EE.1,EE2,00.0,00.1},
(see Ratliff and Rosenthal, 1983), and for a two-block warehouse as

% = {000.0,000.1,E00.1,0E0.1,00E.1,EE0.1,EQOE.1, OEE.1,EEE.1,UU0.1,U0U.1, 0UU.1,EUU.1,UEU.1, UUE.1,
EE0.2,EOE.2,0EE.2,EEE.2a-bc,EEE.2b-ac,EEE.2c-ab,EUU.2,UEU.2,UUE.2,EEE.3}

(see Roodbergen and de Koster, 2001a). For more than two blocks, a similar representation is possible, but
the number of states increases drastically with the number of blocks in the warehouse.

Figure 2 shows two PTSs constructed up to the third aisle. Neither of the PTSs yet represents a complete
tour. All rightmost intersection points have an even degree, leading to EEE for the first part of the state.
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(a) One component continues through cross-aisle 1 (de- (b) Through each cross-aisle leads an unconnected com-

noted by a in (Roodbergen and de Koster, 2001a)), the ponent. The corresponding state is EEE.3, respectively.
other component continues through cross-aisles 2 and 3
(b and c). This results in the state EEE.2a-bc in aisle 3.

Figure 2: Two PTSs, both with an even degree at all intersection points in aisle 3, but different unconnected
components.

However, there exist different possibilities of (dis)connected cross-aisles or blocks, so the state includes this
information. In Figure 2a, the state is EEE.2a-bc, because the PTS has two unconnected components, where
the first component continues through cross-aisle ¥ = 1 (a) and the second component continues through
cross-aisle 2 and 3 (b and c¢). Here, it is necessary to provide the information about which cross-aisles are
connected, as components cannot be inferred just from the parity of the intersection points. In Figure 2b,
the state is EEE.3, because the PTS has three unconnected components that must be finally connected using
later sub-aisle actions.

The state space includes a designated origin vertex o and a destination vertex d. In the DP of Ratliff and
Rosenthal (1983), these are o = 00.0 at the first stage 1 and d = 00.1 at the (artificial) last stage 2m + 1.
Likewise, in the DP of Roodbergen and de Koster (2001a), these are o = 000.0 at the first stage 1 and
d = 000.1 at the last stage 3m + 1.

The set of edges is defined as

E = U oSS | U Eqisle.
J Jk
jET (G, k)ETXB

The sets contain all possible traversing options (=actions) of cross-aisles between aisle j and j + 1, as
well as of (sub-)aisles (j,k) € J x B, that can lead to the optimal solution. Regarding the sets E%Sle, the
actions 1pass and 2pass describe the complete traversal of a sub-aisle once or twice, respectively. (Revenant
et al. (2025) have shown 2pass is redundant in the single-block case, but otherwise indispensable to ensure
optimality.) If the picker enters a sub-aisle from the top, collects all demanded articles in the sub-aisle, and
then leaves the sub-aisle again at the top, this is called a top action. When the action is mirrored and the
sub-aisle is entered from the bottom, it is called bottom. The action gap is the combination of top and
bottom in the same sub-aisle, where the largest part of the sub-aisle with no demanded articles stored is not
visited. The action void occurs if a sub-aisle is not entered at all.

2.2. Additional Transitions for the SPRP-SS

If the articles may be stored at more than one pick position, the just described classical state space
(Section 2.1) needs to be adapted as described by Hefler and Irnich (2024). The set V of vertices of the
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extended state space for the SPRP-SS remains identical to the vertex set of the classical state space for the
SPRP. In contrast, the set E of edges of the extended state space is significantly expanded. Specifically, the
cross-aisle actions remain unchanged compared to the classical state space, while the number of aisle actions
increases considerably.

In the SPRP, there exists at most one relevant aisle action per type in every aisle, e.g., only one top, one
bottom, and one gap, because each demanded article is stored at a unique pick position in the warehouse.
This is no longer the case for the SPRP-SS, as an article may be picked from alternative pick positions in
the warehouse. More precisely, the turning point of an aisle action is no longer unique for the SPRP-SS.
In the unit-demand case, it depends on the decision from which specific pick position a certain article is
collected, as this also determines which pick positions of the article are irrelevant for the tour. In the
general-demand case, it is also possible that the demanded quantity of an article is collected from different
pick positions. This means that a subset of all the article’s pick positions needs to be visited during the
picker tour. Therefore, Hefler and Irnich (2024) introduced parallel aisle actions of the same type in one
aisle, differing only in their respective turning points and the resulting cost of the action.

2.3. Relazxed State Space for the b-SPRP-SS

Independent of the number b of blocks, a feasible picker tour in the SPRP-SS can be described by the
following properties: The tour
(A) imposes an even vertex degree at all intersection points between aisles and cross-aisles,
(B) visits one or sufficiently many pick position(s) for each article s € S, and
(C) makes the tour graph connected.
By construction, each feasible o-d-path over the state space ensures (A). Property (B), i.e., demand coverage,
has been guaranteed by Hefler and Irnich (2024) through the introduction of demand-covering constraints
in the MIP. We will use the same idea in Section 3.
The overarching idea of the paper at hand is to relax property (C) by constructing a relazed state space.
In this relaxed state space, we omit the connectivity information of the states, i.e., we simply drop the second
part of each state that describes the components of the PTS. Hence, the states only specify the parity of each
intersection point of the considered aisle. Accordingly, several states of the original state space merge to a
single state in the relaxed state space. For example, in a two-block warehouse, the states EEE.1c, EEE.2a-bc,
EEE.2b-ac, EEE.2c-ab, and EEE.3 merge into the new state EEE in the relaxed state space. Any state is given
by a vector of b+ 1 entries of {0,U,E} with an even number of U entries. It is straightforward to see that the
relaxed state space has only N (b) different states, where N follows the recursion N (b) = 2N (b—1)+bN(b—2).
The advantage of the relaxed state space is that the number of states per stage grows moderately. Table 1
compares the number of states of the relaxed state space with the original DP of Ratliff and Rosenthal (1983)
for single-block warehouses, the DP for two-block warehouses by Roodbergen and de Koster (2001b), and
the DP of Pansart et al. (2018) for multi-block warehouses.

Number b of blocks 1 2 3 4 5 6 7 8 9 10
Number of states per stage

in DP of Ratliff and Rosenthal 7

in DP of Roodbergen and de Koster 25

in DP of Pansart et al. 6 24 112 568 3032 16,768 95,200 551,616 3,248,704 19,389,824
in our relaxed DP 5 14 43 142 499 1850 7193 29,186 123,109 538,078

Table 1: Comparison of the number of states in warehouses with b blocks of different DPs.

In the relaxed state space, two vertices v,w € V refer to consecutive stages and an action (cross-aisle
action or sub-aisle action) translates v into w. The rules to describe feasible actions are identical to those
that define the DPs of Ratliff and Rosenthal; Roodbergen and de Koster. For the sake of brevity, we do
not formalize the rules here but we give two examples: For a warehouse with b = 5 blocks, the sub-aisle
action gap in sub-aisle (j, 2) translates the state EUOUOE into EUEUOE (interesting positions underlined). The
cross-aisle action 210100 translates the same state EUOUOE into EUOUOO.
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On the downside, Property (C) (connectivity) is no longer fulfilled for o-d-path over the relaxed state
space. We will finally ensure connectivity by adding subtour-elimination constraints when the MIP formu-
lation is solved with a branch-and-cut (B&C) algorithm (see Sections 3 and 4).

3. Network-Flow Formulation of the b-SPRP-SS

Recall that (V) E) describes the relaxed state space introduced in Section 2.3. For each edge e € F,
let c. be the length of the part of the tour related to the action e. Additionally, let bs. be the number of
articles s € S that can be collected when performing action e. In particular, bs. = 0 holds for all s € S and
e € E"%% as well as e € Eaisle describing the action void. The set of edges with a non-negative supply of
article s € S, we denote by e € E,. Let e € §7(v) and e € §~(v) denote the sets of outgoing and incoming
edges of vertex v € V, respectively. The network-flow formulation (NF) of the b-SPRP-SS that we will use
has binary variables z. for all e € F and reads as follows:

Zp-SPRP-SS = Iin Z Celle (1a)
ecE
+1, ifv=o0
subject to Z Te — Z ze=4¢ —1, ifo=d YveV (1b)
e€dt(v) e€d— (v) 0, otherwise
Z bseTe > s Vse S (IC)
ecEy
{subtour-elimination constraints} (1d)
z. € {0,1} Vee E (Le)

The objective function (la) minimizes the total length of the picker tour. Flow conservation through the
relaxed state space is enforced by constraints (1b). Constraints (1c) guarantee that the demand for each
article on the pick list is fully met. The subtour-elimination constraints (SECs) (1d) ensure that the resulting
picker tour is connected. Note that we intentionally do not use the term connectivity constraints, since the
support graph that we will introduce in Section 4.1 does not need to be connected. However, subtours are
clearly infeasible. Finally, the domain restrictions of the decision variables are specified in (1e).

Some remarks about the structure of formulation (1) are due: For the SPRP (no scattering), the equiv-
alence of DP and linear programming implies that the SPRP can be solved solely with (1a), (1b), and (le)
relaxed to . > 0 for all e € E. The approach of HeRler and Irnich (2024) for the SPRP-SS in parallel-aisle
warehouses with a single or two blocks uses NF without SECs, i.e., (1a), (1b), (1c), and (1e).

We can also estimate the size of NF. Since the number of vertices of the relaxed state space is proportional
to N(b)-mb, the same is true for the number of edges. Therefore, formulation (1) has O (N (b)-mb) variables.
There are |V| flow-conservation constraints (1b) and |\S| demand-covering constraints (1c). Since the number
of connectivity constraints (1d) is exponential in the warehouse size, we will use a B&C algorithm described
next to solve the model.

4. Branch-and-Cut Algorithm for the b-SPRP-SS

In this section, we formally introduce the SECs to be used in formulation (1). A major complication
stems from the fact that already testing whether or not a tentative solution imposes a connected picker tour
(or not) is not trivial. To this end, we transform tentative solutions into flow values in a support graph. This
support graph reflects the movements of the picker in the warehouse. The support graph is much smaller
than the relaxed state space. Therefore, feasibility checking and the separation of violated SECs can be
performed efficiently.

We assume that a partial formulation of (1) is solved, i.e., a model consisting of (1a), (1b), (1c), and
(le) with no or just a subset of the SECs (1d). Let this solution be Z = (Z.)ccEk.
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4.1. Warehouse Graph and Support Graph

We motivate the warehouse graph and support graph with the help of an example. Figure 3a shows a
small 3-SPRP-SS instance with five aisles, four cross-aisles, and three blocks. This picker tour is disconnected
and consists of five subtours. We want the warehouse graph to represent the warehouse structure with the
possible movements of a picker and the support graph to capture the picker tour with possible subtours.
Hence, the set W of vertices of the warehouse graph represents all intersection points between aisles and
cross-aisles, i.e.,

W ={wjr:j€JkeK}
(recall that b+ 1€ K but b+ 1 ¢ B).

j=1 2 3 4 5
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(a) An infeasible integer solution of a unit-demand 3-
SPRP-SS instance during the B&C procedure. (b) Warehouse graph of the solution with flow values.
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Figure 3: Infeasible tentative solution of a 3-SPRP-SS instance and the corresponding warehouse graph.

The warehouse graph (W, £) is an undirected multi-graph with loops. The set £ of edges of the warehouse
graph includes all possible ‘horizontal’ and ‘vertical’ connections between the intersection points, which are
defined by

Err = L(wjp, wjp1x) 1§ € J,j #m,k € K} and EVrt = {(wj, wjr+1) : j € J,k € B}

The flow values on the horizontal connections between the vertices w; and w;y1, € W indicate the
number of the traversals of the cross-aisle k between the aisles j and j+1. We assume that crossg. indicates
how often cross-aisle k between aisle j and j + 1 is traversed by edge e € E}"*** of the relaxed state space.

Hence, the flow value on edge (wjk, wjt1,5) € &hor is defined as

fwjkijJrl,k = E Ze+ § 2Te. (2a)
Ccross, CcTross,
eeEj : eeEj :
Ccrossie=1 CTrOSSke=2

The flow values on the vertical connections consider all actions that completely traverse an aisle, which
includes only aisle actions 1pass and 2pass. We refer to this subset of actions as traversal-aisle actions and
denote by E;zass (E;,f,ass) the set of edges of aisle j and block k that represents the action 1pass (2pass).



The flow value on edge (wjk, wjk+1) € EV'Y is given by

Fuspvsonn = D Tet Y 2ae. (2b)
e B c€ B

The solution shown in Figure 3a includes a small subtour that connects the depot in aisle j = 5 with
aisle j = 4, where the corresponding segment of the cross-aisle is traversed twice. In the warehouse graph
in Figure 3b, this subtour is represented by the edge (w4 4, ws 4) with the flow value 2.

Up to now, we are not be able to detect the two subtours in aisle j = 5 and the short subtour in
aisle 5 = 1 depicted in Figure 3a. The reason is that aisle actions with movements in an aisle not traversing
the aisle completely are not yet transferred to the warehouse graph. To this end, we consider the set of
return-aisle actions, which includes the actions top, bottom, and gap. These aisle actions are represented in
the warehouse graph as possibly parallel loops, i.e., edges with both endpoints referring to the same vertex.
We further distinguish whether a sub-aisle is entered from above or from below. Action top enters the
sub-aisle of aisle j and block k from the above using cross-aisle k. However, action bottom enters the same
sub-aisle from below using cross-aisle k + 1. Action gap enters a sub-aisle both from above and from below.

For each vertex w;; € W with j € J and k € B, we introduce a loop indicating that sub-aisle (j,k) is
entered (not traversed completely) via cross-aisle k from above. Likewise, for each vertex w;; € W with
j€Jand k € K,k > 1, we introduce a loop indicating that sub-aisle (j,k — 1) is entered by cross-aisle k
from below, but not traversed completely.

To lighten the notation, we refer to the loops of wj; as (wjk)¥ and (wj;.c)T (instead of (wjk,wjk)T and
(w;, wjk)¥), respectively. Accordingly, we define

Et={(w)t:jeJkeB} and &' ={(wy)':je T ke K k#1}.

Thus, the complete set of edges is £ = EM°rUgvert UL UET. The flow values of the above loops are given by

fut, = > 28+ Y 28 and fut, = dSoo2wme+ > 2z, (2¢)
c€EX? B e€E¥eton €T,
where E;Zp, ERperon, and E5P denote the sets of edges of aisle j and block k that represent the return-aisle
actions top, bottom, and gap, respectively. For convenience, we also define the set of all collection-aisle
actions as ESpect = Ejl-zass U Efiass U E;ZP U EEpEeem U E5P.

In the example in Figure 3a, the first block of the last aisle j = 5 is entered from below, while the second
and the third block are entered from above by two different subtours. The flow values of the corresponding
three loops emanating from the vertices ws > and ws 3 € W are shown with a value of 2 in Figure 3b.

Finally, let a possibly fractional solution Z = (Z.)ccr with flow values f = (f.)cce defined by (2) be
given. We define the support graph (W]aé'f, f) as the edge-weighted graph spanned by the edges with
positive flow. Formally, the edge set is 7 = {e € £ : fe > 0} and the vertex set is the span Wi =W(EF).
In Figure 3b, the support graph contains only the vertices wjj, of the warehouse graph that are depicted in
bold.

4.2. Subtour-Elimination Constraints

Different types of SECs are needed to exclude all possible subtours. Figure 4 provides an overview of
the different SEC types and their requirements. All SECs have in common that they are defined for a
subset S C W of the vertices of the warehouse graph. For any subset S, §(S) consists of all edges of £ with
one endpoint in S and the other endpoint in S := W \ S. We refer to §(S) = §(S) as the cut set of S. By
definition, loops are never contained in a cut set. We use equations (2a), (2b), and (2c) to state the SECs
in terms of flows on the edges of the support graph (Wp, &5, f). Note that we can transform a condition on
the flow of the support graph back into the relaxed state space using these equations. Formally, we replace

f by f and Z by z.
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For each article s € S, we define the S, as

Ss = U {wmwjeal
(4,k)eTx B:
sub-aisle (j, k)
contains article s

This set includes all intersection points at the end of a sub-aisle that allows the collection of the article s.
Next, we further characterize subsets of the warehouse graph.

SECs

SECs I
S and S required SECs I1
f(5($)) >9 S not required
SECs ITa
S covers
sub-aisle (7, k) SECs IIb
S cuts
f((S(S)) > Z Te sub-aisle (7, k)
eeE;(;cllect
SECs IIb* SECs IIb"
Wik € S Wj k41 € S
F6(8)) = fue, FO8) = fur, |

Figure 4: Overview of the different types of SECs.

Definition 1. Let S C W be an arbitrary subset of vertices of the support graph. Then,
(i) S includes the depot, if wj, x, € S and the depot 0 is located at the intersection (jo, ko);
(i1) S cuts a sub-aisle (j,k) € J x B, if (wjk, wj k1) € 0(S);
(ii) S covers a sub-aisle (j, k) € J x B, if wjr, € S and wj x41 € S;
(iv) In the unit-demand case, S is required, if S C S holds for at least one article s € S, or S includes
the depot;
(v) In the general-demand case, S is required, if for at least one article s € S, all sub-aisles (j,k) not
covered by S have an accumulated supply strictly smaller than the demand qs, or S includes the depot.

Note that either S or its complement S = W \ S or both are required because of the depot condition. Any
non-required subset S must have a cut set §(S) that necessarily separates the depot from the vertices in S.
This shows that the scheme presented in Figure 4 applies to all proper, non-empty subsets S or S, taking

into account that f(5(S)) = f(6(S)) holds.

SECs of Type I. 1f both S and S are required, the picker tour must necessarily traverse the cut set 6(S)
twice. This implies

f(6(8)) = 2. (3a)
Figure 5 shows an example where the subset S; = {wjk :1 <5 <3,1 <k <4} includes the depot located
at ws 4. Hence, St is required. Its complement S = {wjr : 4 < j <5,1 <k <4} is also required, since
article s = 18 is only available in sub-aisles covered by S;. Therefore, the SEC (3a) of Type I is valid and
violated for the subset S; (equivalently for Sy).

11
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(a) An infeasible, tentative 3-SPRP-SS solution. (b) The corresponding support graph (W7 &) with
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Figure 5: Different types of violated SECs for an infeasible, tentative solution of a unit-demand 3-SPRP-SS
instance.

SECs of Type Ila. If S is non-required and covers a sub-aisle (7, k), the cut set §(S) separates the depot (in S)

from that sub-aisle. A positive value of fi,, w;,,, indicates that the sub-aisle is completely traversed. This

implies f(0(S)) > fuw;p,w; xs.- Note that the right-hand side fy,, w, .., can be a value between 0 and 2 due

to the definition of the flow values in (2b). Similarly, positive values of quj)k or fJ’i.k-%—l indicate that the sub-

aisle (j, k) is at least entered from the upper or lower end, implying f(4(S)) > ff;)?, . and f(6(S)) > £
The three inequalities can be aggregated into -

f6S) =2 > .. (3b)

collect
ec E].,C

G k41"

Inequality (3b) has the advantage over the three inequalities with a f-value on the right hand side that the
factor of 2 can be added. This results from the fact that the right-hand side assumes values between 0 and 1
compared t0 fu, w; 15 fwJ ,» and fg] . which can assume values between 0 and 2. Indeed, inequality (3b)
dominates the three above inequalities.

Figure 5 shows another example for the subset Sira = {wjr : 4 < j < 5,2 < k < 4}. This subset Sia
does not include the depot. Moreover, the four sub-aisles included in S, allow to collect the articles
S =1{1,3,6,8,18,19}. All these s € S’ are also collectable from other sub-aisles that are not included
in Sira. As a result, Sy, is not required. Since the sub-aisles (4,2), (4,3), (5,2), and (5, 3) are covered by
Sia, the SEC (3b) of Type Ila is valid and also violated for these sub-aisles (j, k).

SECs of Type IIb. 1f S is not required and S cuts a sub-aisle (j, k), the cut set §(S) separates the depot
(in S) either from the upper part of that sub-aisle or from the lower part of that sub-aisle. If it separates
the upper part, this implies

F(8(8)) = fi,, (3¢)
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which is a SEC of Type IIb*. If it separates the lower part, this implies
T
FES) > £, ., (34)

which is a SEC of Type IIbT.

The subset S, = {wa,1,ws 1} highlighted in Figure 5b does not contain the depot and does not cover
any sub-aisle. Therefore, it is not required. For (j, k) = (4,1) or (j, k) = (5,1), the respective sub-aisle is
cut by S. Only for (j, k) = (4,1), the SEC (3c) of Type IIb* is violated for Sty.

Note that the subset Si1, can serve as an example of a violated SEC (3d) of Type IIb" with (j, k) = (5, 2).

4.8. Separation of Subtour-Elimination Constraints

The separation of violated SECs in the B&C algorithm distinguishes between integer (but possibly
infeasible) solutions and fractional solutions. We describe these cases in separate paragraphs now.

Integer Solutions. Let an integer solution be given by Z = (Z.)ccp with flow values f = (f.)cce. It suffices to
inspect the components of the support graph (Wp, £, f). A union-find algorithm can be used to efficiently
determine components, we use the one by Tarjan (1975). If the support graph has two or more components,
subtours exist. For a component given by & C Wy, we have f(6(S)) = 0 such that either the SEC (3a) of
Type I is violated (if both S and S are required), or the SEC (3b) of Type Ila is violated (if S covers a
sub-aisle), or the SEC (3c) or (3d) is violated (if S does not cover any sub-aisle).

Fractional Solutions. Let a fractional solution be given by Z = (Z.)ce g with flow values f = (f.)cee. If the
support graph (Wf, &r, f) has two or more components, we use the same procedure as described for integer
solutions. Otherwise, the support graph consists of a single component, and each type of SEC requires its
own separation algorithm. However, they all exploit that the left-hand side f(§(S)) describes the flow over
a cut set 0(S), so that a max flow/min cut algorithm is applicable (Ahuja et al., 1993, Chapters. 6-8).
In the following, we will determine minimum cuts in which the subsets S and/or S must include certain
subsets X C W or Y C W of vertices. These problems can be solved efficiently by using a standard (s, t)-
max flow/min cut algorithm, either by merging the vertices of X and of Y, creating a new support graph,
or by adding internal edges with a high cost in a preparatory step. In the following, we will use the term
(X,Y)-maz flow/min cut for such a problem.

SECs of Type 1. We start with the simple case of unit demands. Recall from Definition 1(iv) that here
the subsets S and S must be required, i.e., contain the depot or a subset S, of at least one article s € S.
Assuming that the depot 0 is located at the intersection wy = (jo, ko), we solve a sequence of ({wp}, Ss)-max
flow/min cut problems, one for each s € S. Such a minimum cut has the property that the depot wy is
contained in S and S; C S. This implies that both S and S are required. If the flow value of the cut is
smaller than 2, a violated SEC (3a) of Type I is found. The procedure can be made (slightly) more efficient
by preprocessing the subsets Ss, s € S, so that only inclusion-minimal subsets are taken into account.

The case of general demand is more involved. Here, a subset S that does not include the depot is certainly
required, if Ss C S holds for an article s € S. However, recall from Definition 1(v) that smaller subsets of S;
may suffice to obtain a required subset. Such smaller subsets contain some but not necessarily all sub-aisles
that allow the collection of the article s € S. An exact procedure would have to construct exactly all these
smaller subsets and solve max-flow/min cut problems for these. To reduce the computational burden in the
general-demand case, we use a heuristic and only test cuts that result from the ({wg}, Ss)-max flow/min cut
problems for all s € S, and cuts separating the depot from in from a sub-aisle (for all sub-aisles (j, k) € J x B;
here the resulting sets S and S do not necessarily give SECs of Type I).

SECs of Type IIa. For SECs (3b) of Type Ila, the subset S must not be required. However, it must
contain a sub-aisle (j, k), i.e., {wjr, w; x11} € S. Therefore, the separation routine considers all sub-aisles
(4,k) € J x B, and solves for each of them the ({w;x, wj 41}, {wo})-max flow/min cut problems on the
support graph. The sets S and S) have the properties that the depot wg is contained in S and that S
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contains the sub-aisle (j, k). The flow value is then compared against 2 - . et Te. If the flow value is
smaller, a violated SEC (3b) of Type IIa is found for S and sub-aisle (j, k).

SECs of Type IIb. For SECs (3d) and (3c) of Type IIb, the subset S must not be required and must
cut a sub-aisle (j,k), i.e., (wjkr, wj k1) € 0(S). Therefore, the separation routine considers all sub-aisles
(j, k) € J x B, and solves for each of them the (w;, w; r+1)-max flow/min cut problem. The sets S and S)

separate both ends wj, and wj k41 of the sub-aisle. If the flow value is smaller f . or f - (or both),
jk g, k+1
then a violated SEC (3c) or (3d) is found for sub-aisle (j, k), respectively. ’ '

5. Computational Results

This section on computational experiments and results discusses the computational setup in Section 5.1,
describes the generation of b-SPRP-SS instances used in the experiments in Section 5.2, analyzes the lower
bounds at the root node of the B&C in Section 5.2, and compares the number of optimally solved instances
and computation times between a B&C solving an equivalent GTSP and our new B&C in Section 5.4.

5.1. Computational Setup

Our new B&C algorithm is implemented in C++ using the callable library of CPLEX 22.1.2 with Concert
Technology and compiled in release mode with GCC 8.5.0. CPLEX built-in cuts have been used in all exper-
iments. In all calls to CPLEX, default values of all parameters are kept except for setting the number of
available threads to one. The computational study was performed on the high-performance computing clus-
ter MOGON KI of the Johannes Gutenberg University Mainz. The cluster consists of several AMD EPYC 7713
processors running at 2.0 GHz (the performance of a single thread is slightly lower than that of a standard
personal computer).

For solving the unit-demand b-SPRP-SS as GTSP instances, we had access to the reimplementation
in C++ of the B&C algorithm of Fischetti et al. (2002) provided by Hefler and Irnich (2024), where the
callable library of CPLEX is also used. In (Hefler and Irnich, 2024, e-companion, Appendix E), details of the
implementation are discussed, including the GTSP model and valid inequalities used in the B&C algorithm.

B&C algorithms often benefit from tight upper bounds, in particular when solving difficult instances.
We therefore use the iterated local search (ILS) heuristic for the GTSP by Schmidt and Irnich (2022), also
written in C++, to compute upper bounds used in Sections 5.3 and 5.4.

5.2. Instances

Goeke and Schneider (2021) introduced a generation procedure for SPRP-SS instances. Identical or very
similar procedures have been used later by Liike et al. (2024) and Hefler and Irnich (2024). We use the
same generation scheme to create instances with the following characteristics:

e the number of aisles is m € {5,10};

o the number of cells per aisle and per side is C' € {20, 30};

e the number of blocks is b € {3,4};

e The number of different articles to collect is a € {20, 30,40, 50};

e The scatter factor is « € {1.2,1.8,2.5,3.0}.

We refer to a specific pick position on one side of the aisle as a cell. Consequently, a pick position consists of
two cells, one on either side of the aisle (see Figure 1). When possible, all blocks have the same number of
cells; otherwise they differ by no more than one cell. The scattering procedure distributes articles randomly
throughout the warehouse. More precisely, in the first step, each article s € S (a = |S|) is assigned to a
random cell, ensuring that no cell contains more than one article. In the second step, (o« — 1) - @ uniformly
randomly chosen articles s € S are assigned to random cells, again ensuring that no more than one article
per cell. Consequently, on average, each article s € S can be found « times in the warehouse. However,
the demand g; for article s can be smaller than « (1 is the lower bound) or larger. We repeat the random
procedure ten times per setting. Overall, we obtain a set of 1280 =10-2-2-2-4 -4 instances.
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Number of articles

Number of Scatter a=20 a=30 a =40 a =50
blocks aisles factor GTSP NF GTSP NF GTSP NF GTSP NF
b=3 m=5 «a=12 4.82 1.89 7.28 1.55 10.69 1.49 13.15 1.13
1.8 16.97 3.38 26.67 1.98 30.69 2.59 34.18 2.16
2.5 35.51 3.56 45.16 3.63 47.62 3.67 50.84  3.44
3.0 44.75 4.75 53.86 3.83 55.36  5.24 58.62 4.52
Subtotal 25.51 3.40 33.24 2.75 36.09 3.25 39.20 2.82
m=10 «a=1.2 3.64 3.02 542 2.57 6.88 3.14 8.04 2.92
1.8 13.11 2.73 18.64 2.50 18.43 2.22 22.89 3.28
2.5 25.13 3.34 30.84 3.18 32.91 3.30 38.04 3.73
3.0 31.83 4.84 38.16  3.90 42.22  4.30 47.64 4.68
Subtotal 18.42 3.48 23.27 3.04 25.11 3.24 29.15 3.65
b=4 m=5 a«a=1.2 5.55 3.16 6.61 2.92 9.02 2.43 12.06 1.93
1.8 16.14 3.01 22.23  2.80 28.20 3.12 30.62 3.14
2.5 32.24 3.08 40.72 3.89 45.14 4.36 49.77  4.92
3.0 42.60 3.65 50.38 4.43 53.40 5.46 57.20 5.15
Subtotal 24.13  3.22 29.99 3.51 33.94 3.84 37.41 3.79
m=10 «o=1.2 3.82 4.36 4.81 3.20 6.93 3.59 6.66 3.52
1.8 13.46 2.74 16.30 3.35 16.90 3.62 20.15 4.20
2.5 25.08 3.42 28.51 4.20 30.00 4.59 37.31 6.40
3.0 31.61 3.77 36.12 4.60 40.51 5.56 47.66 10.46
Subtotal 18.49 3.57 21.44 3.84 23.59 4.34 27.95 6.15

Table 2: Average integrality gap (opt(I) — LBx(I))/opt(I) in percent for the GTSP and the NF model,
X € {GTSP,NF}. When opt(I) is unknown, we used UB(I) from the ILS heuristic by Schmidt and Irnich
(2022).

Instances with general-demand are generated in the same way, except that, for each article s € S,
the number of available units at each pick position p is uniformly randomly selected from by, € {1,2,3}.
Subsequently, the demands ¢ are randomly drawn from {1, ..., min(6, Zp bsp)}. As there is no competitive
solution algorithm available for the general-demand instances, we will not discuss the results here. However,
all solutions are available at https://logistik.bwl.uni-mainz.de/research/benchmarks/.

5.8. Comparison of Lower Bounds

In a first step, we analyze the strength of the dual bounds of the two formulations, i.e., the GTSP model
used by Fischetti et al. (2002) versus the NF for the unit-demand b-SPRP-SS. More precisely, we compare
the root node lower bounds in the B&C implementations in the MIP solverCPLEX. The lower bounds (LBs)
that we compare result from solving the LP relaxation, adding GTSP-specific valid inequalities and SECs
of Type I, IIa, ITb*, and IIb" (see Section 4.2), respectively. Additionally, we allow CPLEX to add general-
purpose cuts. The implementation is rather straightforward by limiting the number of nodes in the B&C
to one. We denote by LBy gp(I) and LBy (1) the respective lower bounds for a unit-demand instance of
the b-SPRP-SS.

To make the lower bounds comparable, we compute the relative integrality gap as 100 - (opt(I) —
LB(I))/opt(I) (in percent), where opt(I) is the optimal objective value and LB(I) is the lower bound
at the root node. For 57 out of 1280 instances, we are not able to prove optimality with either B&C algo-
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rithm. In these cases, we replace opt(I) by the upper bound UB(I) computed with the heuristic of Schmidt
and Irnich (2022). The latter was run for 600 seconds (10 minutes) per instance I.

Table 2 shows the average relative integrality gaps for 64 groups of instances with an identical number
of aisles m, number of blocks b, scatter factor o, and number of articles to collect a. The 20 instances in
each group only differ in the number of cells per aisle (20 or 30), for which we found that relaxation results
do not differ significantly. Comparing GTSP and NF bounds, the general trend is very clear: LBgrgsp(I) is
weaker than LBynp(I). The only group in which GTSP lower bounds are tighter than NF lower bounds is
for (b,m,a,a) = (4,10,1.2,20) with average values of 3.82 and 4.36 percent, respectively. While the GTSP
model produces average relative gaps that differ between 3.82 and 58.62 percent, those of the NF model are
relatively smaller and vary between 1.13 and 10.46 percent. For the GTSP model, the largest relative gap
occurs for (b,m,a,a) = (3,5,3.0,50), i.e., for instances with approximately 150 pick positions in five aisles
and three blocks. For the NF model, the largest relative gap occurs for (b, m,«,a) = (4,10,3.0,50), i.e.,
also for 150 pick positions but in combination with ten aisles and four blocks. We can therefore expect that
instances with many pick positions are difficult for both types of models and that a larger number of aisles
and blocks makes instances less (more) difficult for the GTSP (NF) model.

5.4. Integer Results

In this section, we report the results of the complete runs of both B&C algorithms. We set the maximum
computation time to 300 seconds (5 minutes) for each run and also use the same grouping of instances as
in the previous section. In pretests, we observed that the performance of the B&C algorithm using NF can
significantly depend on whether a good feasible solution and herewith a tight primal bound and is found
early. Therefore, we test both GTSP and NF in two B&C configurations:

w/o: without providing an initial upper bound (UB)

UB: providing the upper bound UB(I) = opt(I) 4+ 1 (using the CPLEX parameter UpperCutoff)
where opt(I) is the optimal objective value of an instance I or the best known upper bound that we found in
all experiments (for 57 of 1280 instances). Note that these values result from the heuristic GTSP solver and
runs of the B&C algorithms. Accordingly, Table 3 lists for GTSP and NF, either without or with providing
the tight UB, the number of instances for which the B&C algorithms terminate with a proven optimum
within the given time limit.

In total, the B&C algorithm using GTS without UB provides 781 proven optimal solutions, GTSP with
UB provides 750, NF without UB provides 1115, and NF with UB provides 1186. The superiority of the
NF model can be attributed to the much better dual bound (see Section 5.3). However, it is surprising that
providing an excellent UB to the B&C algorithm using the GTSP formulation does not have the expected
positive effect. One possible explanation is that, for instances with a rather large integrality gap, which is
often seen with the GTSP formulation, the quality of the upper bound is not decisive. The MIP solver finds
some reasonable bounds independently of the presence of an initial upper bound, resulting in small relative
differences in the heuristic gaps.

In what follows, we use the best configuration in each case, i.e., GTSP ‘w/0’ and NF with ‘UB’. For
the sake of brevity, we refer to them as GTSP and NF, respectively. Next, we compare computation times.
Table 4 shows the average computation time per group. These results show that the B&C algorithm using
NF is not always the fastest method. Indeed, for the smallest scatter factor of a = 1.2, the GTSP approach
is the method of choice (in these instances, on average, only one out of eery five article is present twice).
For larger scatter factors, NF is generally recommended for larger instances. In particular, when the scatter
factor « is greater than two and at least 30 articles must be picked, the B&C algorithm using NF is faster
than the GTSP solver for almost all groups of instances. The B&C algorithm using NF solves instances
with b = 3 blocks faster than instances with b = 4 blocks. Likewise, it is faster for m = 5 aisles than for
m = 10 aisles. This is intuitive because b - m is the number of sub-aisles over which SECs are defined. The
best case, (b,m,a,a) = (3,5,1.8,50), has a speedup of more than 300 compared to the GTSP solver.

We have not yet analyzed the impact of the number C of cells per aisle on the computational performance.
Recall that all of the above tables have presented aggregated results regarding C. Since the GTSP approach
did not reveal any significant differences, we only present results for our new B&C algorithm using NF.
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Number of articles

a=20 a =30 a =40 a =50

Number of Scatter GTSP NF GTSP NF GTSP NF GTSP NF
blocks aisles factor w/o UB w/o UB w/o UB w/o UB w/o UB w/o UB w/o UB w/o UB
b=3 m=5 a=12 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
1.8 20 20 20 20 20 20 20 20 11 8 20 20 0 0 20 20
2.5 20 20 20 20 8 6 20 20 0 0 20 20 0 0 20 20
3.0 18 15 20 20 0 0 20 20 0 0 20 20 0 0 20 20
Subtotal 75 80 80 48 46 80 80 31 28 80 80 20 20 80 80
m=10 «a=12 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
1.8 20 20 20 20 20 20 20 20 19 17 20 20 8 7 20 20
2.5 20 20 20 20 9 9 20 20 4 2 20 20 0 0 20 20
3.0 20 20 20 20 3 1 20 20 0 0 19 20 0 0 20 20
Subtotal 80 80 80 80 52 50 80 80 43 39 79 80 28 27 80 80
b=4 m=5 a=12 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
1.8 20 20 20 20 20 20 20 20 16 15 20 20 3 1 20 20
2.5 20 20 20 20 13 9 20 20 0 0 20 20 0 0 20 20
3.0 17 16 20 20 1 0 20 20 0 0 20 20 0 0 20 20
Subtotal 776 80 80 54 49 80 80 36 35 80 80 23 21 80 80
m=10 o =12 20 20 14 17 20 20 15 17 20 20 10 16 20 20 11 15
1.8 20 20 17 18 20 20 16 19 20 19 8§ 11 10 7 3 12
2.5 20 20 17 18 13 12 9 16 6 4 7 11 0 0 2 5
3.0 20 20 13 19 1 1 8 15 1 1 6 13 0 0 0 4
Subtotal 80 80 61 72 54 53 48 67 47 44 31 51 30 27 16 36

Table 3: Number of instances solved to proven optimality.

Table 5 compares computation times for C' = 20 and C = 30 cells per aisle. With a few exceptions, the
average computation time is shorter for C' = 20 than for C' = 30. The only group in which not all instances
are optimally solved using B&C with NF is the one with b = 4 blocks and m = 10 aisles. In this group, 40
instances (of 160) with 20 cells and 54 instances (of 160) with 30 cells remain unsolved within the 300-second
time limit.

6. Conclusions and Outlook

In this paper, we have presented the first problem-tailored exact algorithm for the SPRP-SS in parallel-
aisle warehouses with more than two blocks. Currently, only one exact solution approach is known for these
variants of the SPRP-SS, but it is only applicable in the unit-demand case. This approach relies on the
fact that these SPRP-SS instances can be solved as GTSP instances. We have proposed a B&C algorithm
that outperforms the GTSP solver on instances of the SPRP-SS parallel-aisle warehouses with three or four
blocks, including both unit-demand and general-demand cases.

From a methodological point of view, we introduced a hierarchy of SECs sufficient to produce integer
solutions. We showed that the separation problems for all these types of SECs can be efficiently solved
using a so-called warehouse graph, which resembles the aisles and cross-aisles of a warehouse. Solving the
separation requires the solving of a series of max-flow /min-cut problems defined over that warehouse graph.

Extensive computational experiments yielded the following key findings: The linear programming relax-
ation of the new NF usually has a smaller integrality gap than the GTSP model used in the competitor’s
B&C algorithm. Therefore, within a 5-minute computation time limit, our new B&C algorithm can compute
many more provably optimal solutions than the GTSP solver. However, the computational study also shows
that results are not clear-cut. Our B&C algorithm only outperforms the B&C algorithm for the GTSP when
there are many pick positions, i.e., when the scatter factors is greater than 2 and more than 20 articles to
be picked on the picker tour. Otherwise, our proposed B&C can be considerably slower than the B&C algo-
rithm for the GTSP. In summary, our new B&C algorithm exploits the fact that the corresponding GTSP

17



Number of articles

Number of Scatter a =20 a =30 a =40 a =50
blocks aisles factor GTSP NF GTSP NF GTSP NF GTSP NF
b=3 m=5 a=12 0.03 0.42 0.10 0.43 0.75 0.47 5.98 0.37
1.8 0.63 0.93 16.85 0.80 199.05 1.00 300.00 0.88
2.5 14.03 1.21 233.91 1.29 300.00 1.61 300.00 2.15
3.0 90.01 1.38 300.00 1.45 300.00 3.88 300.00 3.48
Subtotal 26.18 0.99 137.97 0.99 201.09 1.74 229.58 1.72
m=10 o =1.2 0.03 2.96 0.09 4.35 0.48 6.11 1.40 6.17
1.8 0.36 3.08 5.43 4.93 47.42 5.79 207.78 16.03
2.5 3.85 5.65 181.93 8.72 274.97 17.14 300.00 20.27
3.0 35.47 9.63 283.93 17.81 300.00 41.04 300.00 45.12
Subtotal 9.93 5.33 117.85 8.95 156.52 17.52 205.47  21.90
b=4 m=5 a=12 0.04 6.38 0.10 5.37 0.38 3.06 2.22 2.29
1.8 0.45 7.32 4.52 9.12 101.42 10.94 264.61 8.36
2.5 14.17 9.91 167.57 11.45 300.00 19.36 300.00 28.03
3.0 76.61 9.64 296.60 13.11 300.00 26.30 300.00 34.15
Subtotal 22.81 8.31 117.20 9.76 176.63 14.91 219.39 18.21
m=10 o =1.2 0.04 101.93 0.10 100.61 0.31 120.80 0.89 165.21
1.8 0.45 64.79 2.48 86.31 28.67 172.51 184.91 226.10
2.5 4.55 66.93 149.29 126.61 253.68 198.63 300.00 256.77
3.0 19.80 85.98 289.19 153.19 292.66 173.75 300.00 274.02
Subtotal 6.21 79.91 110.26 116.68 143.83 166.42 199.46 230.52

Table 4: Average computation time (in seconds) of the B&C algorithm using GTSP model without UB and
NF with UB. Instances not solved to optimality within the 300-second time limit are considered with 300s.
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Number of articles

Number of Scatter a=20 a=30 a =40 a =50
blocks aisles factor C =20 30 C =20 30 Cc =20 30 C=20 30
b=3 m=5 a=12 0.39 0.45 0.45 0.42 0.47 0.47 0.33 0.40
1.8 0.94 0.92 0.71 0.88 0.84 1.15 0.86 0.90
2.5 0.91 1.52 1.08 1.49 1.36 1.86 2.09 2.21
3.0 1.52 1.25 1.12 1.77 3.29 4.46 3.91 3.05
Subtotal 0.94 1.03 0.84 1.14 1.49 1.98 1.80 1.64
m=10 o =1.2 2.96 2.96 4.56 4.14 5.20 7.02 6.97 5.36
1.8 2.87 3.30 4.59 5.27 3.24 8.35 18.23 13.82
2.5 6.04 5.25 6.28 11.17 24.63 9.64 23.92 16.63
3.0 7.96 11.29 17.30 18.32 44.13 37.95 47.71 42.54
Subtotal 4.96 5.70 8.18 9.73 19.30 15.74 24.21 19.59
b=4 m=5 a=12 4.75 8.00 4.65 6.09 2.30 3.81 1.89 2.70
1.8 4.97 9.66 5.93 12.31 8.71 13.17 6.41 10.31
2.5 4.91 14.91 5.10 17.80 12.42 26.29 25.41 30.65
3.0 6.86 12.42 6.31 19.90 22.40 30.20 25.58 42.71
Subtotal 5.37 11.25 5.50 14.03 11.46 18.37 14.82 21.59
m=10 o =1.2 76.36 127.51 63.52 137.71 80.82 160.78 154.10 176.32
1.8 40.58  88.99 44.56 128.05 169.09 175.93 195.27 256.94
2.5 57.21 76.64 128.43 124.79 195.77 201.49 251.60 261.93
3.0 55.24 116.73 119.22 187.15 146.37 201.13 257.69 290.35
Subtotal 57.35 102.47 88.93 144.42 148.01 184.83 214.66 246.39

Table 5: Average solution time (in seconds) of the B&C algorithm using NF with UB for C' = 20 and 30.
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instances often have comparatively more vertices (one for each relevant pick position) than the warehouse
graph of that instance.

We think that future research on effective exact algorithms for SPRP-SS, particularly for warehouses
with more aisles or blocks, should probably not rely on the type of dynamic-programming state spaces that
were used here. Promising B&C-based approaches could combine inequalities for GTSP with cuts that
exploit the warehouse structure.
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